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Abstract

Mutant selection windows (MSWs), the range of drug concentrations that select for drug-

resistant mutants, have long been used as a model for predicting drug resistance and

designing optimal dosing strategies in infectious disease. The canonical MSW model offers

comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast,

the fitness landscape model with N alleles, which maps genotype to fitness, allows compari-

sons between N genotypes simultaneously, but does not encode continuous drug response

data. In clinical settings, there may be a wide range of drug concentrations selecting for a

variety of genotypes in both cancer and infectious diseases. Therefore, there is a need for a

more robust model of the pathogen response to therapy to predict resistance and design

new therapeutic approaches. Fitness seascapes, which model genotype-by-environment

interactions, permit multiple MSW comparisons simultaneously by encoding genotype-spe-

cific dose-response data. By comparing dose-response curves, one can visualize the range

of drug concentrations where one genotype is selected over another. In this work, we show

how N-allele fitness seascapes allow for N � 2N−1 unique MSW comparisons. In spatial drug

diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous

MSWs, extending the MSW model to more fully reflect the selection of drug resistant geno-

types. Furthermore, using synthetic data and empirical dose-response data in cancer, we

find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-

based model. By simulating a tumor treated with cyclic drug therapy, we find that mutant

selection windows introduced by drug diffusion promote the proliferation of drug resistant

cells. Our work highlights the importance and utility of considering dose-dependent fitness

seascapes in evolutionary medicine.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011878 February 22, 2024 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: King ES, Tadele DS, Pierce B, Hinczewski

M, Scott JG (2024) Diverse mutant selection

windows shape spatial heterogeneity in evolving

populations. PLoS Comput Biol 20(2): e1011878.

https://doi.org/10.1371/journal.pcbi.1011878

Editor: Dominik Wodarz, University of California

San Diego Division of Biological Sciences, UNITED

STATES

Received: April 10, 2023

Accepted: January 31, 2024

Published: February 22, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011878

Copyright: © 2024 King et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: JGS and ESK were supported by NIH

5R37CA244613-04 (https://www.cancer.gov/).

ESK was supported by NIH 3T32GM007250-46S1

(https://www.nigms.nih.gov/). JGS was supported

https://orcid.org/0000-0002-0345-3780
https://orcid.org/0000-0003-2971-7673
https://doi.org/10.1371/journal.pcbi.1011878
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011878&domain=pdf&date_stamp=2024-03-05
https://doi.org/10.1371/journal.pcbi.1011878
https://doi.org/10.1371/journal.pcbi.1011878
http://creativecommons.org/licenses/by/4.0/
https://www.cancer.gov/
https://www.nigms.nih.gov/


Author summary

Drug resistance in infectious disease and cancer is a major driver of mortality. While

undergoing treatment, the population of cells in a tumor or infection may evolve the abil-

ity to grow despite the use of previously effective drugs. Researchers hypothesize that the

spatial organization of these disease populations may contribute to drug resistance. In this

work, we analyze how spatial gradients of drug concentration impact the evolution of

drug resistance. We consider a decades-old model called the mutant selection window

(MSW), which describes the drug concentration range that selects for drug-resistant cells.

We show how extending this model with continuous dose-response data, which describes

how different types of cells respond to drug, improves the ability of MSWs to predict evo-

lution. This work helps us understand how the spatial organization of cells, such as the

organization of blood vessels within a tumor, may promote drug resistance. In the future,

we may use these methods to optimize drug dosing to prevent resistance or leverage

known vulnerabilities of drug-resistant cells.

Introduction

Drug resistance in cancer and infectious disease is governed by the unifying principles of evo-

lution. Selection, which is integral to evolution, may be described by dose-response curves,

which model growth rate as a function of drug concentration. Genotype-specific dose-

response curves are ubiquitous across disease domains, including cancer and infectious dis-

ease. Dose-response curves can vary between different genotypes in multiple characteristics,

such as their y-intercept (drug-free growth rate), IC50 (half-maximal inhibitory concentra-

tion), and shape [1–9]. Dose-response curves may also reveal fitness tradeoffs, or costs, where

drug resistance imposes a fitness cost in the drug-free environment [10–12]. These diverse col-

lections of dose-response curves among individual disease states give rise to varying degrees of

selection when the drug concentration varies in time and space. Collections of genotype-spe-

cific dose response curves constitute fitness seascapes, which extend the fitness landscape

model by mapping both genotype and environment (i.e. drug concentration) to fitness (Box 1

and Fig 1A) [1–3, 13–16].

The concept of the mutant selection window (MSW), the range of drug concentrations

where the mutant growth rate is not fully suppressed and exceeds the wild-type growth rate,

has been studied as a means of predicting evolution and optimizing drug regimens [1, 5, 6, 17–

22]. Under the MSW paradigm, drug regimens should be chosen that minimize the time a

patient is subject to a drug concentration within the MSW (Box 1 and Fig 1B) [22, 24]. Das

et al. have previously demonstrated that MSWs are intrinsically embedded in fitness seascapes

[1]; by comparing dose-response curves in a fitness seascape, one can visualize the range of

drug concentrations that selects for a drug resistant mutant. Previous work has shown how

patient nonadherence and drug gradients caused by tissue compartmentalization confound

the use of MSWs in optimizing drug regimens, allowing for the emergence of drug resistant

mutants [5, 6, 25, 26]. Incorporating PK/PD models and MSWs may be crucial for translating

evolutionary medicine to the clinic– for instance, Pan et al have demonstrated the presence of

an MSW for Pseudomonas aeruginosa in an in vivomodel, revealing a correlation between

sub-optimal PK/PD parameters and the emergence of drug resistance [27]. In addition, drug

diffusion from blood vessels has been found to be a driver of drug concentration gradients in

cancer, potentially limiting the effectiveness of chemotherapies [28–30].
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Box 1: Fitness seascape and MSW terminology

Fitness seascapes

Fitness seascapes are extensions of the fitness landscape model that map both environ-

ment and genotype to fitness. For instance, while a fitness landscape may map genotype

to minimum inhibitory concentration (MIC), a measure of drug resistance, a fitness sea-

scape may map genotype and drug concentration to growth rate. Here, we model fitness

seascapes as collections of genotype-specific dose-response curves. Previous usage of the

term ‘fitness seascape’ has referred specifically to time-varying fitness landscapes. How-

ever, implicit in this use is that the environment shapes the fitness landscape, and it is

the time-varying dynamics of the environment that result in the time-varying fitness

landscape. In this work, we propose expanding the definition of fitness seascape to

include any mapping from genotype and environment to fitness. Formally, we can

define the relationship between fitness seascapes and fitness landscapes as

Sð½c�Þ ¼ L½c�; ð1Þ

where S([c]) represents the fitness seascape as a function drug concentration and L½c�
represents the fitness landscape at a given drug concentration. In Fig 1A, genotypes are

modeled as binary strings of length 2, where each position in the string indicates the

presence or absence of a particular point mutation. Each genotype is associated with a

corresponding dose-response curve. Dose-response curves are modeled by:

gð½c�Þ ¼
gdrugless

1þ eðIC50� ½c�Þ=n
; ð2Þ

where gdrugless is the genotype-specific growth rate in the absence of drug, IC50 is the

half-maximal inhibitory concentration, and ν is the Hill coefficient, which determines

the steepness of the curve. The collection of genotype-specific dose response curves con-

stitutes a fitness seascape, where fitness is a function of both genotype and drug concen-

tration. Rank-order fitness landscapes that describe the relative fitness rank of each

genotype at 10−2 and 102 μg/mL drug are shown inset in Fig 1A. The fitness landscape

changes as a function of drug concentration due to the dose-response curves associated

with each genotype. Fitness costs to drug resistance are also intrinsically embedded in

fitness seascapes. The wild-type 00 genotype exhibits the highest growth rate in the

absence of drug, while genotype 11, which has the highest IC50, exhibits the lowest

growth rate in the absence of drug.

Mutant selection windows

Mutant selection window refers to the range of antibiotic concentrations that select for a

drug resistance mutant without fully suppressing growth [1, 5, 6, 17–22]. MSWs are impor-

tant to consider because they are thought to facilitate the evolution of antibiotic resistance.

MSWs have been used to design dosing regimens that minimize the time that a patient’s

serum drug concentration is within the MSW (tMSW) [21, 23]. Fig 1B shows a simulated

patient’s serum drug concentration following a single antibiotic dose. The MSW for this

particular microbe is 0.35–0.65 in the normalized range. The time spent within the MSW,

tMSW, is indicated by the blue shaded region. While the patient’s serum concentration is

within this range, the drug resistant mutant is selected for without being fully suppressed.
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MSWs traditionally offer comparisons between two genotypes or phenotypes at a time—

i.e., between a drug susceptible reference genotype and a drug resistant genotype. By examin-

ing MSWs with the fitness seascape model, we may compare many genotypes simultaneously.

For instance, in the binary landcsape model with Nmutational sites, each genotype may be

simultaneously compared to N adjacent genotypes (genotypes that differ by 1 mutation) [3,

31–37]. Here, we expand on this idea and explore the MSW model through the lens of fitness

seascapes. First, we illustrate how an N-allele fitness seascape allows for N � 2NMSW compari-

sons at a time. Then, we derive the steady-state drug concentration profile for drug diffusion

from blood vessels in 1 and 2 dimensions, revealing the presence of heterogeneous MSWs.

Using a 2-D agent based model, we explore how drug diffusion shapes MSW spatial heteroge-

neity and how MSW spatial structure impacts evolution. By parameterizing our model with

novel empirical dose-response data in non-small cell lung cancer, we simulate a tumor treated

with cyclic drug therapy. We find that mutant selection windows driven by drug diffusion pro-

mote drug resistance and result in treatment failure. While previous work has analyzed the

importance of time spent in a MSW, we also consider the impact of space occupied by a MSW.

We argue that both time and space occupied by a MSW may impact the emergence of

resistance.

This work further explores the connection between mutant selection windows and fitness

seascapes using realistic pharmacokinetic models. Our results highlight the utility of fitness

seascapes in modeling evolution when drug concentration varies in space. Furthermore,

because of the multiplicity of MSWs present in a fitness seascape, this work suggests that a

higher-dimensional MSW model offered by fitness seascapes may be more powerful for pre-

dicting evolution in clinical settings, particularly when concerned with population

heterogeneity.

Fig 1. Illustrations of fitness seascapes and mutant selection windows. (A) Example fitness seascape parameterized with random dose-response data.

Genotypes are modeled with binary strings, where ‘0’ represent the absence of a point mutation at a specific position and ‘1’ represents the presence of

said mutation. Corresponding rank-order fitness landscapes are annotated at 10−2 and 102 μg/mL. (B) Example patient serum drug concentration

profile over time for a single drug dose. The mutant selection window range is annotated in gray, while the time the serum drug concentration resides

within the mutant selection window, tMSW, is shown in blue.

https://doi.org/10.1371/journal.pcbi.1011878.g001
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Results

Fitness seascapes embed mutant selection window data

We first investigated how multiple mutant selection windows are embedded in fitness sea-

scapes, as demonstrated by Das et al. [1]. Here, we model genotypes as binary strings of length

N, with a zero indicating no mutation and a 1 indicating a mutation in a given allelic position.

N represents the total number of resistance-conferring mutations considered. These mutations

can be thought of as either single nucleotide polymorphisms, single amino acid substitutions,

or larger chromosomal changes. To illustrate this, we model a simple 2-allele fitness seascape

by mapping a combinatorially complete set of genotypes (00, 01, 10, 11) to independent, ran-

domly generated dose-response curves (Fig 1A). Dose response curves differ in their IC50 and

drug-free growth rates. Empirical fitness seascapes bearing a similar structure and demonstrat-

ing fitness tradeoffs have been reported by others across different kingdoms of life, providing a

theoretical foundation for this approach [1–3].

In an N-allele model, each genotype can be compared to N neighboring genotypes in the

landscape (Fig 1A). Here, ‘neighboring’ refers to genotypes that differ by one genetic change,

or Hamming distance 1 (i.e., 00 and 01 are neighbors, but not 00 and 11). When calculating

mutant selection windows, one first defines a wild type or ‘reference genotype’ to compare to

the mutant. Given that each genotype in a fitness seascape can itself be thought of as the refer-

ence genotype and compared to its N neighbors, an N-allele fitness seascape embeds N � 2N

MSW comparisons. If one includes only uniqueMSW comparisons, i.e. the distinction between

reference and comparison genotype is not meaningful, then this expression is N � 2N−1. Fig 2B

shows the grid of all possible MSWs for a 2-allele seascape, shaded by the selection coefficient

si,j. The selection coefficient is defined as si;j ¼
gi
gj
, where gi represents the growth rate of the

more fit genotype and gj represents the growth rate of the less fit genotype. Reference selection

refers to the range of drug concentrations where the reference genotype has a higher fitness

than the mutant. Similarly, mutant selection refers to the range of drug concentration where

the mutant has a higher fitness. Net loss refers to the range of drug concentrations where the

net replication rate of the reference and mutant genotypes are both less than 0. An example of

how MSWs are calculated with dose-response curves is shown in Fig 2A. Notably, the strength

of selection blurs between the boundaries of the selection windows, further complicating the

MSW paradigm (Fig 2B). It may be useful to consider where selection is strongest within a

MSW when designing dosing strategies.

Multiple mutant selection windows arise when drug concentration varies in

space

We next sought to investigate MSWs in physiologically-relevant spatial models of drug drug

diffusion in tissue. For the 1-dimensional (1D) case, we consider a location x at a time t. The

drug concentration u(x, t) arising from a blood vessel source can be modeled with drug diffu-

sion rate D, drug clearance rate γ, and the drug concentration at the tissue-blood vessel bound-

ary k. We use a partial differential equation (Eq (3)) to find a steady state solution of drug

diffusion:

@

@t
uðx; tÞ ¼ D

@
2

@x2
uðx; tÞ � guðx; tÞ þ kdðxÞ; ð3Þ

where δ(x) is the Kronecker delta function representing a blood vessel modeled as a point
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source. The 1D steady-state solution is of the form:

uðxÞ ¼
k
ffiffiffiffiffiffiffiffi
4Dg
p exp � jxj

ffiffiffiffi
g

D

r� �

: ð4Þ

The clearance rate γ summarizes drug metabolism, consumption, and clearance into one

parameter. We model a blood vessel source at x = 0 and compute drug concentration as a func-

tion of distance from the blood vessel. Using a similar approach to the time-varying case

above, we used information provided by the simulated N = 2 fitness seascape to identify

MSWs in space. Drug diffusion results in four different MSWs across the simulated 1D tissue

patch (Fig 3A). These results demonstrate that, given a constant supply of a drug source from a

vessel in a tissue compartment, multiple mutant selection windows may exist simultaneously.

To better understand spatial heterogeneity, we extended the model to 2 dimensions (2D)

with a similar partial differential equation as before (see Methods for derivation). The steady-

state drug concentration is given by:

uðrÞ ¼
k

2pD
K0

ffiffiffiffi
g

D

r

r
� �

; ð5Þ

Fig 2. Fitness seascapes embed mutant selection window data. (A) Example MSWs shown with the corresponding dose-response curves. The black

line (01) is the dose-response curve for the reference genotype, while the white lines are considered the mutant genotypes. Orange corresponds to the

reference selection window, blue to the mutant selection window, and red corresponds to the drug concentration that inhibits growth of both genotypes

(net loss). (B) All 8 (8 =N � 2N, N = 2) MSW comparisons for a 2-allele fitness seascape. Each two row group represents a single reference genotype

compared to its two neighboring genotypes. Reference selection, mutant selection, and net loss windows are calculated as a function of drug

concentration and shown as colored rectangles. Selection windows are shaded by the normalized selection coefficient, si,j, which is defined as the

normalized ratio between the growth rates under comparison, si;j ¼
gi
gj
, where gi represents the growth rate of the genotype under selection and gj

represents the growth rate of the less fit genotype. All dose-response data is taken from the fitness seascape in Fig 1A.

https://doi.org/10.1371/journal.pcbi.1011878.g002
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where K0(�) is a modified Bessel function of the second kind and r is the radial distance from

the blood vessel source. We then considered the spatial effects of multiple blood vessels as drug

sources in two dimensions, allowing for a more sophisticated representation of MSWs in tis-

sue. For convenience, we set
ffiffiffi
g

D

p
¼ 1mm� 1. The distinction between 1 and 2 spatial dimen-

sions is important, as the space occupied by a MSW in 2D scales by the distance from the

blood vessel squared, versus linearly in 1D. The steady-state drug concentration profile is

shown in Fig 3B, with two blood vessels placed at (0,-0.4) and (0,0.4). Identifying the MSWs as

before reveals 3 distinct windows in this regime (Fig 3C), with the 11 mutant window appear-

ing to ‘bridge’ between the two blood vessels.

This 2D model offers a more complete picture of the MSWs functionally existing in an area

around two blood vessels. These results suggest that including drug diffusion and pharmaco-

dynamic effects may be important for simulating and predicting the evolution of drug resis-

tance spatially. Introducing more blood vessels with arbitrary patterns would further

complicate the drug diffusion pattern and the resulting MSWs. Together, these results compli-

cate the notion of a single MSW driving the evolution of drug resistance. Instead, multiple

MSWs may dictate evolution within a single population across time and space.

Drug pharmacokinetics drive spatial heterogeneity

We next sought to understand how the spatial heterogeneity of MSWs may impact genetic het-

erogeneity in an evolving population. Using the Hybrid Automata Library (HAL) [38], we

implemented spatial agent-based simulations parameterized with the synthetic fitness seascape

shown in Fig 1. In this work, we use the terms “agents” and “cells” interchangeably. We simu-

lated evolution on a 100-by-100 grid with drug diffusion from two blood vessels placed at

x = 50, y = 25 and x = 50, y = 75 (aligned vertically at the midline of the grid). Each simulation

was initiated as a circle with radius 10 and an initial proportion of mutants of 0.01, meaning

that each initial cell had a 0.01 probability of having a non-wild-type genotype (i.e. 01, 10, or

11). In addition to beginning the simulation with a heterogeneous population, mutants can

arise during the simulation by random mutations during cell division. We also used HAL to

Fig 3. 1- and 2-D diffusion models reveal diverse MSWs. (A) Simulated 1-D drug diffusion in tissue from a blood vessel placed at x = 0. The black line

represents the drug concentration as a function of distance x from the blood vessel, while the color represents the MSW at that region. (B) 2-D steady

state drug diffusion from two blood vessels placed at (0, -0.4) and (0, 0.4). (C) Spatial MSWs corresponding to the steady-state diffusion in B. All dose-

response data is based on the fitness seascape described in Fig 1.

https://doi.org/10.1371/journal.pcbi.1011878.g003
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simulate drug diffusion over time using the built-in partial differential equation (PDE) solver

and the PDE grid functionality. Using the PDE solver, we studied how MSWs shift with differ-

ent pharmacodynamic parameters, such as the drug elimination rate γ. The parameter γ may

change depending on the drug under study, tissue type, and patient-specific drug metabolism.

Example results are shown in Fig 4, with each column in the figure corresponding to a value of

γ increasing from left to right. We found that varying γ impacts the MSW pattern (Fig 4A and

4B), with low elimination rate (γ = 10−4) selecting primarily for genotype 11 (orange), while a

high elimination rate (γ = 0.5) selects primarily for genotype 00 (blue). Example simulations

and population timetraces are shown in Fig 4C and 4D. As shown in Fig 4D, it takes several

weeks for some of the simulations to converge on the population distribution predicted by

Fig 4. Varying drug elimination rate promotes MSW and population heterogeneity. Example results of simulations of cells evolving in a drug

concentration gradient from two blood vessels. Each column corresponds to a different drug elimination rate (0 to 0.5, labeled at the top of each

column). (A) Final drug concentration profile at the end of the simulations. (B) Mutant selection windows for the final drug concentration profiles. (C)

Example simulations. Each quadrant represents an individual simulation. Colors correspond to the cell genotype at each grid position. (D) Averaged

population counts from simulations for each condition. Colored lines correspond to the average number of cells of each genotype over time, while

shading corresponds to the standard error estimate over time (N = 10 simulations per condition). Dotted horizontal lines indicate the steady-state cell

count predicted by the MSWs.

https://doi.org/10.1371/journal.pcbi.1011878.g004
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MSWs in this particular parameter regime—therefore, these simulations are most likely to be

relevant for a relatively long-term treatment schedule, where the drug distribution can reach a

steady-state due to repeated dosing. However, other parameter regimes and pharmacokinetic

parameters may result in different rates of convergence.

To better understand the utility of MSWs in predicting evolution, we next explored how

the structure of MSWs, such as spatial heterogeneity, shapes evolution. First, we investigated

the impact of MSW heterogeneity on the resulting population heterogeneity. We quantified

MSW and population heterogeneity using Altieri entropy, which decomposes entropy into

spatial mutual information and global residual entropy [39]. We found that MSW heterogene-

ity is strongly associated with population heterogeneity, with R2 = 0.94 (Fig 5A).

Thus far, few studies have investigated the impact of space occupied by MSWs on the evolu-

tion of drug resistance—time spent within a MSW during a treatment regimen has been the

primary concern when using MSWs to design optimal therapies. We found that the space

occupied by a genotype’s mutant selection window is correlated with the number of cells of

that genotype at the end of the simulation (Fig 5B), with R2 = 0.82. Taken together, these

results suggest that 1) drug diffusion can drive MSW heterogeneity, 2) MSW spatial heteroge-

neity shapes population spatial heterogeneity, and 3) the area occupied by a mutant selection

window is important to consider when studying the evolution of drug resistance.

Sensitivity analysis of mutation rate, initial mutant proportion, and blood

vessel geometry

We hypothesized that the predictive power of MSWs would depend on certain experimental

parameters such as mutation rate and initial population heterogeneity, but would not depend

environmental parameters such as blood vessel geometry. To test this, we performed a sensitiv-

ity analysis by varying initial mutant proportion, mutation rate, and blood vessel separation

and quantifying the difference between the Altieri entropy of the MSWs and the population.

Fig 5. MSW structure drives population heterogeneity. (A) Altieri spatial entropy of the population genotypes and MSWs as a function of drug

elimination rate. R2 shown for the correlation between MSW entropy and population entropy. (B) Correlation between the area occupied by an MSW

and the number of cells of that genotype at the end of the simulation. Each point in the scatter plot corresponds to an individual genotype in a single

simulation.N = 10 simulations per drug elimination rate γ.

https://doi.org/10.1371/journal.pcbi.1011878.g005
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Normalized entropy difference Δentropy was calculated as

Dentropy ¼
ðeMSW � epopulationÞ

2

eMSW
; ð6Þ

where eMSW and epopulation refer to the Altieri entropy of the MSWs and the population, respec-

tively. Results of the sensitivity analysis are shown in S1 Fig. We found that Δentropy decreased

with increasing mutation rate up to 0.01, but beyond 0.01, drift begins to dominate over selec-

tion and the predictive power of MSWs decreases. The marginal distribution shows that initial

mutant probability was not strongly correlated with Δentropy. However, the joint distribution in

reveals that the impact of initial mutation probability was more prominent at lower mutation

rates, with increasing initial mutant probability corresponding with lower Δentropy for mutation

rate less than 10−3. Notably, we found that that Δentropy did not vary strongly with vessel separa-

tion, suggesting that the predictive capacity of MSWs is independent of blood vessel density.

Example simulations of varying blood vessel separation are shown in S2 Fig. These results sug-

gest that MSWs are most likely to be relevant for predicting population structure when the

mutation supply or population heterogeneity is high.

Application to experimental non-small cell lung cancer data

The theoretical framework presented here may be applied to a variety of different settings

involving spatial evolution of asexually reproducing populations. This includes both infectious

diseases and solid tumors, which may demonstrate dramatically different length and time

scales. For instance, a tumor may have a length scale on the order of centimeters and a treat-

ment timescale of months to years, while a case of mitral valve endocarditis may have a length

scale on the order of millimeters and a timescale of days to weeks. To better understand the

broader applicability of our work, we investigated real-world examples of drug diffusion in

tumors. Primeau et. al. analyzed in vivo perivascular doxorubicin concentration in three cell

lines (murine 16C and EMT6 tumors and human prostate cancer PC-3) [40]. In all three cell

lines, they found that doxorubicin concentration varied dramatically as a function of distance

from blood vessels, revealing marked heterogeneity on the length scale of the tumors. Fitting

their data to a 1-D model of exponential decay,

uðxÞ ¼ ke� xlnð2Þ=L; ð7Þ

where x is the distance from a blood vessel and L is the “characteristic penetration length” (dis-

tance at which u(x) = 0.5 � k), they found that L is between 40–50 μm. This length scale is on

the order of a typical cancer cell diameter, suggesting that different cells within the tumor

experience dramatically different drug concentrations.

While most work on drug diffusion in cancer has focused on doxorubicin due to its fluores-

cent properties, other anti-cancer drugs have been found to also have significant gradients

across the length scale of a tumor. For instance, cells 75–150 μm from the nearest blood vessel

were found to regain control levels of proliferation in murine models treated with gemcitabine

[41]. Other drugs, including mitoxantrone, 5-Fluorouracil, methotrexate, and danorubicin

have been shown to have similar biologically relevant diffusion length scales [42, 43].

We combined the drug diffusion model in Eq (7) with in vitro dose-response experiments

in non-small cell lung cancer (NSCLC). We engineered PC9 cells with a BRAF V600E muta-

tion, a KRAS G12V mutation, or both, in addition to fluorescent labels. By culturing cells in

different concentrations of gefitinib, an EGFR inhibitor, and imaging the cells over time, we

estimated the growth rate for each cell line versus drug concentration (Fig 6A). Raw data of

cell counts over time for each condition are shown in S3 Fig. Notably, we observe fitness costs
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to resistance, as all of the drug-resistant cell lines exhibit a lower growth rate than the wild-

type in the absence of drug. We parameterized our agent-based model with this data and simu-

lated drug diffusion with varying length scales using Eq (7). An example of drug diffusion with

L = 2 (*20–40 μm) is shown in Fig 6B and the resulting MSWs are shown in Fig 6C. We

observed a steep drop off in growth rate above a gefitinib concentration of 1.8μM (S4 Fig)—

thus, we defined drug concentrations above 1.8μM as the “net loss” regime, meaning that cell

division probability was zero for each genotype.

We used this in vitro dose-response data and diffusion model to investigate how mutant

selection windows impact tumor drug resistance. Using HAL, we performed stochastic, spatial

simulations to model tumors subjected to a treatment regimen. The treatment plan consisted

of four cycles, with one week on drug followed by one week off, followed by a subsequent four-

week period without therapy. The drug regimen is indicated by gray vertical bars in Fig 7C.

We quantified the size of the tumor and fraction of cells that were resistant over time for vary-

ing diffusion length scales, from L = 2 to L = 16 grid points (Fig 7). We found that a low char-

acteristic length of L = 2 did not fully inhibit tumor growth, but resulted in a low fraction of

drug resistant cells (Fig 7C). Mutant selection windows depicted in Fig 7A indicate that the

wild-type was selected across a broad area of the tumor under this characteristic length. L = 4

somewhat inhibited tumor growth but resulted in tumors composed of *30% drug-resistant

cells. Notably, the mutant selection windows for BRAF and KRAS mutants took up most of

the tumor area in this regime. We found similar results for L = 8, with the KRAS MSW occu-

pying the most space. Finally, L = 16 completely obliterated the tumor for each replicate, as the

net loss regime covered the entire grid. While these results were obtained by initializing

tumors with pre-existing heterogeneity (proportion of initial mutant cells*10%), we repeated

these analyses with no pre-existing heterogeneity and found qualitatively similar results (S5

Fig).

These results suggest that mutant selection windows introduced by drug diffusion drives

drug resistance in this model of tumor evolution. When mutant selection windows for drug

Fig 6. Empirical fitness seascape in genetically-engineered NSCLC cells. (A) Empirical dose-response curves for PC9 cells. WT = wild-type,

BRAF = BRAF V600E mutation, KRAS = KRAS G12V mutation, BRAF-KRAS = both mutations. (B) Example drug diffusion from two blood vessels

using the model in Eq (7) and characteristic length L = 2 grid points (*20–40 μm). (C) MSWs introduced by the drug concentration gradient in B

calculated using the fitness seascape in A.

https://doi.org/10.1371/journal.pcbi.1011878.g006
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resistant mutants dominate, cycled therapy fails to fully eliminate the tumor and results in a

high fraction of drug resistant cells.

Discussion

In this work, we have investigated how MSW data is embedded in fitness seascapes and how

numerous MSWs may exist when the selection pressure varies in space. In a simple model of

drug diffusion from a blood vessel, we have illustrated how multiple MSWs may exist simulta-

neously in space. Using a 2-D agent-based model of evolution, we showed how MSW structure

shapes evolution of a population in a drug concentration gradient using synthetic data. These

results suggest that incorporating information from fitness seascapes may expand the power of

Fig 7. Mutant selection windows drive drug resistance in simulated cancer therapy. Summary of tumor therapy simulations. Each column

corresponds to a different drug diffusion characteristic length L. (A) Mutant selection window plots for different length scales resulting from drug

diffusion from two blood vessels. The net loss regime represents a drug concentration that completely inhibits cell division. (B) Example simulations

corresponding to the characteristic length in A. Black grid points indicate no cells at that position. (C) Average timecourse of total number of cells

(blue) and the number of drug resistant cells (orange). “Drug resistant” refers to any cell that is not wild-type. Traces represent the average of N = 10

simulations and are shaded by the standard error. In many cases, the standard error is less than the width of the plot line. Gray vertical bars indicate the

“drug on” time.

https://doi.org/10.1371/journal.pcbi.1011878.g007
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MSW models to predict evolution. Additionally, we measured a novel empirical fitness sea-

scape in NSCLC and studied how mutant selection windows promote tumor drug resistance

in silico. We found that MSWs that arise due to drug diffusion may play a role in drug resis-

tance in cancer. Importantly, our work demonstrates how certain drug diffusion regimes not

only fail to inhibit tumor growth, but also promote the emergence of drug resistant mutants.

Previous computational and experimental work has demonstrated that drug diffusion gra-

dients and differential drug penetration, which permit heterogeneous MSWs, facilitate antibi-

otic and antiviral resistance [6, 25, 44]. For instance, Feder et al. have explored how differential

drug penetration in HIV results in variable mutant selection windows and can promote drug

resistance [6]. We expand on this work to include spatial stochastic simulations, novel drug

diffusion models, and a novel, empirical drug resistance model in cancer. Our work shows

how the MSW model is a general framework for understanding how pharmacokinetics may

promote drug resistance across diseases, including cancer and infectious disease.

These findings have several limitations. While the purpose of this work is to demonstrate

how MSWs are important to consider in a variety of settings and diseases, we did not exhaus-

tively explore the space of possible pharmacokinetic or biological parameters. Furthermore,

different tissue and cell types may consume drug at variable rates, confounding the constant

rate of drug elimination considered here. However, we mitigate this concern in our cancer

model by relying on a drug diffusion model generated from in vivo data. In the context of

infectious disease, pathogens may migrate along selection gradients—while we did not model

this phenomenon, we expect that migration may increase the relevance of MSWs, as migration

promotes admixture and increases the capacity of cells to proliferate in their “ideal” location.

More complex blood vessel arrangements may also confer additional MSW heterogeneity [45].

While the results presented here pertain to drug variation in space, variation in time is also a

concern. Drug pharmacokinetic profiles, dosing regimes, and patient-specific nonadherence

may cause the serum drug concentration to cross multiple mutant selection windows through-

out the course of treatment. For instance, Nande and Hill, among others, have shown that

drug absorption rate and patient nonadherence can impact the evolution of resistance [2, 26].

While previous applications of MSWs have focused on antibiotic resistance, we believe that

the concepts explored here are highly relevant to cancer, where drug resistance is a major

driver of mortality. As the drug concentration profile is dependent on the tumor type, specific

drug of interest, and vessel distribution, experiments accounting for these factors will be neces-

sary for clinical translation of the theoretical concepts presented here. Previous work has dem-

onstrated the use of radiolabeled drugs and immunofluorescence for quantifying drug

diffusion in vivo [46]. Combining these techniques with microvasculature imaging technology

such as super-resolution ultrasound imaging may enable fine-grained prediction of the drug

concentration profile in an individual tumor [47].

Our work is related to several other theoretical concepts across ecology, evolution, and

medicine. For instance, fitness valley crossings, which permit adaptation despite there being a

substantial fitness barrier, may be more likely in spatial gradients [48]; the boundary between

mutant selection windows may promote genetic admixture, facilitating fitness valley crossings

[49]. Furthermore, population heterogeneity discussed here may be thought of in the context

of quasispecies theory [50, 51]. Although quasispecies theory is commonly applied to viral

dynamics, it may be more generally applied to any system with selection and genetic drift. A

drug-dependent, spatial quasispecies theory may be comparable to the MSW model. While

MSWs reflect selection only, quasispecies theory includes selection and drift and describes an

equilibrium distribution of genotypes.

In the future, we may leverage fitness seascape data and the MSW analysis framework to

more accurately predict the evolution of drug resistance. This may allow us to predict, or
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even control the trajectory of an evolving population and leverage known mechanisms of

resistance [52–54]. Such an approach could allow us to optimize drug dosing regimens,

reduce the total amount of drug used in the course of treatment, and help mitigate the risk of

drug resistance.

Materials and methods

Diffusion from a point source with constant absorption in one dimension

We modeled the drug concentration gradient that a population of cells in tissue may experi-

ence as a point source with diffusion and constant absorption. The absorption rate encapsu-

lates clearance, metabolism, and consumption of drug. Formally, we want to track the

concentration u(x, t) on an infinite size domain, with diffusion described by diffusivity D,

absorption at every position described by a rate γ> 0, and a source term that is a Kronecker

delta function (δ(x)) with strength k> 0 at the origin x = 0. The diffusion equation then takes

the form:

@

@t
uðx; tÞ ¼ D

@
2

@x2
uðx; tÞ � guðx; tÞ þ kdðxÞ: ð8Þ

We assume we initially have zero concentration everywhere, so u(x, 0) = 0. To solve this, we

will Fourier transform the above equation:

uðx; tÞ ¼
1

2p

Z 1

� 1

dy eixy~uðy; tÞ; ð9Þ

where ~uðy; tÞ is the Fourier transform of u(x, t). Now let us take temporal and spatial deriva-

tives of Eq (9), which we can then substitute into Eq (8):

@

@t
uðx; tÞ ¼

1

2p

Z 1

� 1

dy eixy
@

@t
~uðy; tÞ;

@

@x
uðx; tÞ ¼

1

2p

Z 1

� 1

dy iyeixy~uðy; tÞ;

@
2

@x2
uðx; tÞ ¼

1

2p

Z 1

� 1

dy ð� y2Þeixy~uðy; tÞ:

ð10Þ

The final fact that we need is the Fourier transform of the Dirac delta function,

dðxÞ ¼
1

2p

Z 1

� 1

dy eixy: ð11Þ

Substituting Eqs (9)–(11) into Eq (8), and collecting everything on one side under the same

integral, we get:

1

2p

Z 1

� 1

dy eixy
@

@t
~uðy; tÞ þ Dy2~uðy; tÞ þ g~uðy; tÞ � k

� �

¼ 0: ð12Þ

In order for Eq (12) to be true for any x, the parenthetical terms have to equal to zero. This

yields an ordinary, first-order differential equation for ~uðy; tÞ:

@

@t
~uðy; tÞ ¼ � ðDy2 þ gÞ~uðy; tÞ þ k: ð13Þ
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Using the initial condition u(x, 0) = 0, we find the solution for ~uðy; tÞ:

~uðy; tÞ ¼
� k

Dy2 þ g
e� tðDy2þgÞ � 1
� �

: ð14Þ

Substituting into Eq (9) and rearranging we get our solution for u(x, t):

uðx; tÞ ¼
1

2p

Z 1

� 1

dy
eixyð1 � e� tðDy2þgÞÞk

Dy2 þ g
: ð15Þ

Taking the limit t!1, the concentration profile approaches a stationary distribution that

is analytically solvable and simplifies the integration term to yield:

uðx;1Þ ¼
k
ffiffiffiffiffiffiffiffi
4Dg
p exp � jxj

ffiffiffiffi
r
D

r� �

: ð16Þ

Diffusion from a delta source with constant absorption in two dimensions

To model drug diffusion from a point source is two dimensions, we use a similar modeling

technique as Eq (8):

@

@t
uðx1; x2; tÞ ¼ D

@
2

@x2
1

þ
@

2

@x2
2

� �

uðx1; x2; tÞ � guðx1; x2; tÞ þ kd
ð2Þ
ðx1; x2Þ: ð17Þ

Here δ(2)(x1, x2) is the 2D Dirac delta, δ(2)(x1, x2) = δ(x1)δ(x2) which represents our drug

source. We know by symmetry that the solution will only depend on the radial coordinate, u
(x1, x2, t) = u(r, t), where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1
þ x2

2

p
. However, it is easier to proceed with the Fourier trans-

form first in Cartesian coordinates, so we will delay the transformation to polar coordinates

for now. The 2D Fourier transform is:

uðx1; x2; tÞ ¼
1

ð2pÞ
2

Z 1

� 1

dy1dy2 e
iðx1y1þx2y2Þ~uðy1; y2; tÞ: ð18Þ

We calculate the temporal and spatial derivatives analogously to Eqs (10) and (11), and the

result is this 2D iteration of Eq (12):

1

ð2pÞ
2

Z 1

� 1

dy1dy2 e
iðx1y1þx2y2Þ

@

@t
~u þ Dðy2

1
þ y2

2
Þ~u þ g~u � k

� �

¼ 0: ð19Þ

We can now convert our original and Fourier variables into polar coordinates: x1 = r cos θ, x2

= r sin θ, y1 = ρ cos ψ, y2 = ρ sin ψ. By symmetry we know that ~uðy1; y2; tÞ ¼ ~uðr; tÞ, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1
þ y2

2

p
. Eq (19) becomes:

1

ð2pÞ
2

Z 1

0

dr
Z 2p

0

dcr eirr cosðc� yÞ @

@t
~uðr; tÞ þ Dr2~uðr; tÞ þ g~uðr; tÞ � k

� �

¼ 0: ð20Þ

For this equation to be always true, the parenthetical terms must be zero, yielding:

@

@t
~uðr; tÞ ¼ � ðDr2 þ gÞ~uðy; tÞ þ k: ð21Þ

This has exactly the same form as Eq (13) with ρ in place of y. Hence the solution mirrors Eq
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(14):

~uðr; tÞ ¼
� k

Dr2 þ g
e� tðDr2þgÞ � 1
� �

: ð22Þ

The solution u(x1, x2, t) = u(r, θ, t) in polar coordinates is then the inverse Fourier transform

of the above:

uðr; y; tÞ ¼
1

ð2pÞ
2

Z 1

0

dr
Z 2p

0

dcr eirr cosðc� yÞ k
Dr2 þ g

1 � e� tðDr2þgÞ

� �

¼
1

2p

Z 1

0

dr
krJ0ðrrÞ
Dr2 þ g

1 � e� tðDr2þgÞ

� �
:

ð23Þ

Here J0(z) is a Bessel function of the first kind. Note that the θ dependence has been integrated

out, so u(r, θ, t) = u(r, t), as expected by symmetry. This integral cannot be computed analyti-

cally, but can be easily approximated numerically. To solve for the steady-state solution, we

take the limit t!1:

uðr; t ¼ 1Þ ¼
1

2p

Z 1

0

dr
krJ0ðrrÞ
Dr2 þ g

¼
k

2pD
K0

ffiffiffiffi
g

D

r

r
� �

:

ð24Þ

Here K0(z) is a modified Bessel function of the second kind. This function diverges at r = 0,

which proves problematic for calculating concentrations near the blood vessel sources. Instead,

we choose a blood vessel radius r> 0 and set the drug concentration within that radius equal

to a constant maximum drug concentration. Thus, this analysis holds more strongly for analy-

sis away from the immediate vicinity of the vessel.

To model drug diffusion from an arbitrary number of sources, we convolved the discretized

version of Eq (24) (ui,j(t =1)) with a 2D matrix of point sources (Δi,j), where (i, j) represents

position in the discretized 2D space:

Ui;j ¼ ui;jðt ¼ 1Þ⊛Di;j: ð25Þ

Evolutionary simulations with HAL

We used HAL to implement on-lattice 2-dimensional agent-based simulations with drug dif-

fusion. Each cell, or agent, was defined by its genotype, modeled by the binary strings 00, 01,

10, and 11, with each position in the string corresponding to resistance-conferring point muta-

tion. These genotypes were assigned to the synthetic or empirical dose response curves shown

in Figs 1A and 6A. These dose-response curves determined the division probability of each cell

as a function of drug concentration. At each time step, cells have the opportunity to divide

with or without mutation, die, or do nothing. To divide, a cell must have at least one adjacent

grid space unoccupied. When mutating, cells can change genotype to any of the two “adjacent”

genotypes, meaning genotypes which differ by 1 position in the binary string (i.e., genotype 10

can mutate to 11 or 00 with equal probability). A lattice of size 100x100 was used for all simula-

tions. For the simulations used in Figs 4 and 5, blood vessels were placed at positions x = 50,

y = 25 and x = 50, y = 75. Diffusion was modeled using the PDE solver functionality in HAL,

with the blood vessels supplying a constant drug concentration. Each point in the lattice

PLOS COMPUTATIONAL BIOLOGY Mutant selection windows shape spatial heterogeneity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011878 February 22, 2024 16 / 22

https://doi.org/10.1371/journal.pcbi.1011878


absorbed drug at a variable rate γ, and the boundary was set to drug concentration of 0. For

the constant drug concentration profile used in the NSCLC experiments, the drug concentra-

tion at each lattice point was calculated according to the pharmacokinetic model in Eq (7)

prior to the start of the simulation. Cells were subject to the constant drug concentration pro-

file during the “drug on” time and 0 drug during the “drug off” time. Parameters used in the

simulations for Figs 4–7 are shown in Table 1.

For the sensitivity analyses, mutation rate and initial mutant probability were varied between

0 and 10−1 and blood vessel spatial separation was varied from 0 to 80 grid points (S1 Fig).

Dose-response curves in genetically engineered cells lines

To parameterize our simulations, we performed an in-vitro drug sensitivity profiling assay

using parental PC-9 cells (Sigma-Aldrich, USA) expressing green fluorescence protein (GFP).

Drug resistant PC-9 cells were engineered using a lentiviral transduction system to stably inte-

grate and co-express B-RAF-V600E and mCherry, K-RAS-G12V and mCherry, and double

mutant expressing both oncogenes and blue fluorescence protein (BFP). Cells were maintained

in RPMI-1640 supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS) and 1%

penicillin and streptomycin at 37 C under a humidified atmosphere containing 5% CO2.

Experimentally, cells were harvested at 70–80% confluence, stained with trypan blue (Invitro-

gen, USA), and counted with a Countess 3 Automated Cell Counter (Life Technologies, USA).

Each cell line was seeded at a density of 1500 cells/100μL in a 96-well plate (Corning, USA)

that contains different concentrations of Gefitinib (Cayman, USA) ranging from 0–5.4 μM in

three replicates per condition. Then time-lapse microscopy images were obtained for GFP,

mCherry, and BFP using BioSpa (Biotek, USA) every 4 hours for 96 hours. Images were pro-

cessed with the open-source software CellProfiler to obtain cell counts. The CellProfiler pipe-

line is available in the github repository.

Growth rates for each condition were estimated by fitting a linear regression to the log-

transformed cell counts over time. Growth rate versus drug concentration were then fit to the

following dose-response curve using the optimize package in SciPy [55]:

gð½c�Þ ¼ gmaxþ
ðgmin � gmaxÞ ∗ ½c�

n

ICn
50
þ ½c�n

; ð26Þ

where [c] is the drug concentration, gmax is the maximum (drug-free) growth rate, gmin is the

minimum growth rate, IC50 is the half-maximal inhibitory drug concentration, and ν is the

Hill coefficient. Estimated dose-response parameters are shown in Table 2.

Table 1. Simulation parameters. Synthetic simulation refers to the results in Figs 4 and 5, while empirical simulation

refers to the results in Figs 6 and 7.

Parameter Synthetic Data Simulation Value Empirical Data Simulation Value

Mutation rate 10−4 bp−1 10−3 bp−1

Initial mutant probability 0.01 0.01

Death rate 0.1 0.025

Initial grid density 1 0.01–1

Initial shape Circle (r = 10) Square (L = 100)

Blood vessel drug concentration 103 μg/mL 10 μg/mL

Diffusion rate 0.1 n/a

Time steps 1000 hr 2016 hr

https://doi.org/10.1371/journal.pcbi.1011878.t001
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Supporting information

S1 Fig. Sensitivity analysis reveals model robustness to vessel geometry. (A) Joint heatmap

of mutation rate versus initial mutant probability. Normalized entropy difference is the

squared difference between the Altieri entropy of the MSW map and the Altieri entropy of the

final population distribution, normalized by the MSW entropy (Eq (6)). (B) Joint heatmap of

vessel separation (lattice points between the two blood vessels) versus initial mutant probabil-

ity. (C) Marginal distribution of normalized entropy difference versus blood vessel separation.

(D) Marginal distribution of normalized entropy difference versus initial mutant probability.

(E) Marginal distribution of normalized entropy difference versus mutation rate.

(TIF)

S2 Fig. Example MSWs and population distributions for vessel separation experiments.

Each column corresponds to a different blood vessel separation distance labeled at the top of

each column. Distance is in units of lattice points. Drug elimination rate γ = 0.01, mutation

rate = 0.001, and initial mutant probability = 0.01.

(TIF)

S3 Fig. Cell count over time for different concentrations of gefitinib. Each column corre-

sponds to a cell type (WT, BRAF, KRAS, or BRAF-KRAS). Each row corresponds to a concen-

tration of gefitinib (labeled on the right hand side in μM). Each condition has 3 replicates.

Each condition is labeled with the estimated average growth rate (hr−1).

(TIF)

S4 Fig. Dose-response curves with corresponding pharmacodynamic curve fits used to

parameterize tumor agent-based models. Growth rate versus drug concentration calculated

from the data in S3 Fig.

(TIF)

S5 Fig. Mutant selection windows drive drug resistance in simulated cancer therapy. Sum-

mary of tumor therapy simulations with no pre-existing heterogeneity. Each column corre-

sponds to a different drug diffusion characteristic length L. (A) Mutant selection window plots

for different length scales resulting from drug diffusion from two blood vessels. The net loss

regime represents a drug concentration that completely inhibits cell division. (B) Example

simulations corresponding to the characteristic length in A. Black grid points indicate no cells

at that position. (C) Average timecourse of total number of cells (blue) and the number of

drug resistant cells (orange). Drug resistant refers to any cell that is not wild-type. Traces rep-

resent the average of N = 10 simulations and are shaded by the standard error. In many cases,

the standard error is less than the width of the plot line. Gray vertical bars indicate the “drug

on” time.

(TIF)

Table 2. Estimated dose-response parameters.

Parameter WT BRAF KRAS BRAF-KRAS

gmax (hr−1) 0.039 0.037 0.036 0.035

gmin (hr−1) 0.018 0.029 0.033 0.029

IC50 (μg/mL) 0.033 0.037 0.020 0.053

ν 2.18 2.19 17.45 1.85

https://doi.org/10.1371/journal.pcbi.1011878.t002
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