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Motion blur microscopy: in vitro imaging of
cell adhesion dynamics in whole blood flow

Utku Goreke 1, Ayesha Gonzales2,4, Brandon Shipley2,4, Madeleine Tincher3,
Oshin Sharma1, William J. Wulftange3, Yuncheng Man 1, Ran An1,
Michael Hinczewski 2 & Umut A. Gurkan 1,3

Imaging and characterizing thedynamics of cellular adhesion inblood samples
is of fundamental importance in understanding biological function. In vitro
microscopymethods arewidely used for this task but typically require diluting
the blood with a buffer to allow for transmission of light. However, whole
blood provides crucial signaling cues that influence adhesion dynamics, which
means that conventional approaches lack the full physiological complexity of
living microvasculature. We can reliably image cell interactions in microfluidic
channels during whole blood flow by motion blur microscopy (MBM) in vitro
and automate image analysis using machine learning. MBM provides a low
cost, easy to implement alternative to intravital microscopy, for rapid data
generation where understanding cell interactions, adhesion, and motility is
crucial. MBM is generalizable to studies of various diseases, including cancer,
blood disorders, thrombosis, inflammatory and autoimmune diseases, as well
as providing rich datasets for theoretical modeling of adhesion dynamics.

Cellular interactions, including cell adhesion, migration, and chemo-
taxis, are important in investigating the mechanisms of diseases
including cancer, thrombosis, inflammatory diseases, anemia, and
vasculopathy. In vitro cellular imaging techniques for hematology
generally require the use of an aqueous buffer1–3, which dilutes the
sample and allows transmission of light for imaging4. However, buffer
solutions replace the original whole blood medium, potentially
affecting the biological mechanisms under investigation. For instance,
plasma proteins facilitate the interaction of red blood cells with
endothelial cells, and red blood cells inducemargination of leukocytes
and platelets to the vascular wall5,6. Comprehensively understanding
these phenomena requires a physiologically realistic approach that
includes the presence of whole blood. Therefore, intravital methods
remain the gold standard for studies of important dynamic processes
associatedwith cellular interactions7. Intravital methods includemulti-
and single-photon microscopy, confocal microscopy, Brillouin spec-
troscopy combined with light microscopy, lightsheet microscopy, and
endomicroscopy8–13. However, intravital microscopy methods are
highly costly, and require intensive effort in both setup and analysis,

and therefore have limited applicability for the broader research
community14,15. Total internal reflection fluorescence microscopy is a
potential in vitro alternative for visualizing cellular interactions under
whole blood flow (and examples with buffer flow already exist16,17). But
fluorophore labeling in whole blood can be challenging. Finally, laser
optical imaging has been used for obtaining the number of platelet
interactions that occur with a protein substrate in a microfluidic
channel18, but this method is limited to a single numeric output
(intensity of light scattered over time) and has additional experimental
setup complexity.

Here, we describe a practical, accessible, and easily adaptable
microscopy method that enables real-time imaging of dynamics of
cellular interactions under whole blood flow in vitro by completely
eliminating the need for blood sample dilution. We call our approach
motion blur microscopy (MBM). MBM leverages blurring to make the
cellular interactions that take place at slower velocity scales discern-
able (Fig. 1). For simplicity, we showcase MBM on protein functiona-
lized surfaces, but MBM also works on endothelialized surfaces. We
show that the numbers of adhesive sickle red blood cells (sRBCs) from
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individuals with sickle cell disease interacting with the endothelial
surface are greater than those of healthy RBCs, and diluting the whole
blood samples may diminish these interactions or result in aberrant
interactions (Fig. 2). Individual cells with a velocity substantially less
than the bulk flow (i.e., immobile, adhered cells, or those that are
rolling/migrating while in contact with the surface) can be visualized
within the whole blood flow. MBM allows in vitro analysis of various
static and dynamic properties of cellular interactions, all while
mimicking key in vivo conditions.

MBM works by reducing the light source and increasing the
exposure time, resulting in streaks of flowing cells that generate noisy
images. Thus, to identify and analyze adhered cells, an experimenter
must spend a considerable amount of time and effort to distinguish
cells. While this may not be a difficult task when analyzing individual
MBM images, manually analyzing dynamic interactions from MBM
videos consisting of hundreds or thousands of frames can be

impractical and error-prone. Therefore, we developed an automated
machine-learning-based analysis, which can efficiently characterize the
dynamics of cellular interactions in MBM videos. The automated ana-
lysis is a two-phase system,where phase one identifies groups of pixels
in an MBM image corresponding to adhered cells, and phase two
classifies these groups by cell type (Fig. 3a). The phase one task is
completed using amachine learning segmentation network. The phase
two task is completed by classifying cells by their size, or by using a
machine learning classification network, depending on the complexity
of the system under study. Figure 3b–e shows examples of adhered
regions that one might expect the automated analysis to classify.
Figure 3b, c corresponds to regions of interest, containing sRBCs and
chimeric antigen receptor T-cell (CAR-T) cells, respectively, and the
automated analysis should correctly identify these regions as adhered
cells. Figure 3d depicts a typical object adhered to the surface that is
not protein functionalized, and Fig. 3e shows other stationary objects
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Fig. 1 | Motion blur microscopy (MBM). a Moving objects in the foreground
obstruct the stationary objects in the background. b By adjusting the exposure,
moving objects are blurred to obtain a clear view of the background. c The same
principle is applied tomicroscalewhole blood flow. Shown are three views ofwhole
blood flow in the same microscopic field with different microscope settings.
Increasing the camera exposure (integration time) helps blur the foreground,

which consists of non-adhered (flowing) cells. Long exposure results in excess
brightness which is then compensated by a reduction of the light source voltage to
obtain a clear view of the adhered cells in the background. Yellow arrows show the
flowdirection. The shear rate of the flow is 50 s−1 which is enough to induce the blur
at 1200ms integration time. d Schematic illustration of the microfluidic channel,
with clearly visible adhered cells and blurry flowing cells.

Fig. 2 | MBM allows capturing cellular interactions on endothelial layers and
PBS dilutiondiminishes the sickle RBCadhesion events. aHumanumbilical vein
endothelial cell (HUVEC) layer on the microfluidic device surface without blood
flow. b Original MBM images of sickle red blood cells (RBCs) on the endothelial
surface, shown without gray histogram adjustment. c MBM image shown in inset
(b) after stretching the histogram to its limits. d Aberrant cellular aggregations in
diluted flow. e Under whole blood flow the number of adhered HbSS RBCs was

significantly greater than HbAA RBCs. The number of adhered RBCs did not
increase after extended flow duration. On the other hand, the dilution of the HbSS
whole blood resulted in similar adhesion in HbAA and HbSS samples. Moreover,
extended flow duration significantly increased the RBC adhesion through aberrant
cellular interactions such as clumping. Red circles denote locations of adhered
RBCs. The scale bar applies to all images. n = 3, biological replicates, p-values are
calculated with one-tailed Mann–Whitney with ties and continuity correction.
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that are not cells. The automated analysis pipeline distinguishes these
non-functionally adhered objects and other non-cell objects from the
adhered cells of interest.

With our automated analysis, we can process MBM images in an
accurate and high throughputmanner. Adhered cells can be identified,
and morphological features, such as the size and eccentricity of each
individual cell can be extracted. MBM videos enable studying the
dynamics of cells on the individual level and allow us to determine
kinetic properties like adhesion durations and average velocities (for
the case of cells that roll or migrate while on the surface). The indivi-
dual cell data can be aggregated to produce group statistics, such as
distributions of morphological features and dynamic quantities, or
mean squared displacements. Importantly, the method allows us to
identify and analyze the properties of hundreds of thousands of cells.
These data can be used to help us understand cellular adhesion
dynamics, or be used in clinical studies. Since our approach relies on a
basic experimental microscopy setup, we anticipate that it will be
highly accessible to the broader research community.

Results and discussion
Characterizing fundamental cellular interactions on the single-cell
level can reveal small sub-populations of cells that initiate pathogen-
esis. Here, we focus on two diseases where the cellular interactions in
the vascular space carry central importance. Analyzing these sub-
populations typically requires intravital microscopy, and thus, serves
as a means to demonstrate the effectiveness of MBM in challenging
applications. The first of these diseases is sickle cell disease, where
hemoglobin, the fundamental protein underlying red blood cells’
oxygen transport, polymerizes in a deoxygenated environment. When
the hemoglobin polymerizes, a cascade of events can occur, leading to
a debilitating disease complication known as a vaso-occlusive crisis.
Red blood cells containing polymerized sickle hemoglobin experience
physical and chemical changes, resulting in abnormally stiff, dense,
and adhesive cells19–21. The second disease in focus is malignant solid
tumors where T-cell migration is crucial for immunotherapy of this
type of malignancy. Many CAR-T therapies are under development for
solid tumors, and they hold great promise for treating refractory
cancers. Understanding the migration of T cells, specifically CAR-T
cells, would lead to better design of future cell therapies when dia-
pedesis/migration is an important aspect of the therapy, as in the case

of solid tumors. An accessible, reliable, single-cell level in vitromethod
for analyzing CAR-T cell behavior, like MBM, would accelerate over-
coming this bottleneck.

To demonstrateMBMandput its validity to the test, three distinct
experimental setups were used. One experimental setup used a
laminin-functionalized channel to observe sRBCs under flow. A second
experimental set-up used an E-selectin functionalized channel to
observe CAR-T cells under flow. The final experimental set-up used a
P-selectin functionalized channel to observe a combination of red
blood cells and CAR-T cells under flow. We include this final set-up as
an additional demonstration of the flexibility of MBM, and the details
of its analysis are in the Supplementary Information (SI). In this work,
we aim to accomplish three main goals. One, we show that MBM with
automated analysis is accurate, insofar as it can correctly classify cells
for a variety of inputs in a reproducible manner. Two, we show that
relevant physical properties of identified cells can be determined.
Three, we show that the identified cells and their properties constitute
a data set with practical uses, ranging from studying cellular adhesion
mechanics to aiding in clinical studies.

Overview of MBM with automated analysis
Herewe summarize the complete process for analyzing blood samples
using MBM (full details can be found in the Methods and SI). Given a
cell type (or types) of interest, we functionalize a microchannel with
suitable adhesion proteins. Blood samples sent through the micro-
channels are then imaged to produce either individualMBM images or
videos. Cells of interest adhere to the functionalized protein surfaces
and become visible against the blurred foreground of non-adhered
flowing cells. TheMBM images are analyzed via a two-stage automated
process schematically illustrated in Fig. 3a. The first phase consists of a
segmentation neural network, which labels pixels from MBM images
corresponding to adhered objects, and groups together neighboring
labeled pixels. In phase twoof the analysis, groups of labeled pixels are
then classified by cell type using either a size threshold (in applications
where size is a sufficient criterion) or a specially trained classification
neural network (inmore complicated scenarios). After all of the cells in
an MBM image or MBM video have been identified, we then generate
data for each identified cell. Morphological properties like the size and
eccentricity of each cell can be extracted, as well as dynamical prop-
erties such as adhesion duration or mean velocity. Using the

Fig. 3 | Cartoon diagram of automated analysis pipeline and example objects.
a The pipeline is conducted in two distinct phases. In the first phase (segmentation
network), groups of adhered pixels that may correspond to an adhered cell are

identified. In the second phase (size thresholding), these groups are classified by
cell type.b–e Four examples of adhered objects thatmight appear inMBM images.
(b, c) show cells of interest, while (d, e) show non-relevant adhered regions.
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automated analysis, we were able to extract properties of individual
cells for sRBC/laminin images and videos, a CAR-T/P-selectin video,
and CAR-T/E-selectin videos, all together containing hundreds of
thousands of adhesion events.

MBM-based cell classification is reproducible and accurate
In caseswhereonly a single cell type is expected tobevisible in anMBM
image, we demonstrate that we can distinguish groups of adhered
pixels identified by the phase one segmentation network from debris
and other artifacts using morphological properties of the group.

In Fig. 4, we show joint probability densities of the size and
eccentricity of all groups of adhered pixels identified by the segmen-
tation network for two collections of MBM images: sRBC adhesion to
laminin (Fig. 4a) and CAR-T adhesion to E-selectin (Fig. 4b). The his-
tograms on the top and right edges of the figures are marginal dis-
tributions of either the size or eccentricity alone. The joint
probabilities reveal three distinct classes of objects: small size/high
eccentricity, small size/zero eccentricity, and large size/high eccen-
tricity. The last category corresponds to sRBC or CAR-T cells, and
hence we can use a size threshold (indicated by dashed vertical lines)
to distinguish cells from other adhered objects (i.e., debris). Each
group of pixels above the threshold is classified as a cell.

To validate the inter-experimenter reproducibility of this classifi-
cation scheme, two researchers replicated five consecutive experi-
ments each. The experimenters used a single tube of blood collected
from a homozygous sickle-cell disease subject and analyzed the
number of sRBCs using the MBM approach five times, each over a
fifteen minute period per experiment. The results did not show a sig-
nificant difference between the experimenters (Fig. 5a, p =0.934, two-
wayANOVAwith replication). Furthermore, the coefficient of variation
within the replications of each experimenter was <25% for all but one
data point (Fig. 5b), an important precision benchmark for bioanaly-
tical method validation22. Collectively, these results provide reason-
able assurance for the acquisition of meaningful results by showing
that our experimental procedure and analysis pipeline are precise and
independent of the experimenter.

Finally, we tested the accuracy of the procedure in counting cells,
by comparing manual human and automated counts of adhered cells
in various MBM images for both sRBC adhesion to laminin (Fig. 5c,
N = 174) and CAR-T adhesion to E-selectin (Fig. 5d, N = 169). The pipe-
lineperformedverywell,with anR2 valueof0.99 for both the sRBCand
CAR-T cases. Importantly, the counts remained accurate even as the
number of adhered cells becomes large in an individual image.

MBM can provide high-throughput single-cell dynamic data
The effectiveness of MBM at analyzing adhered cells in static images
generalizes to videos, allowing us to characterize the dynamics of
adhered cells on protein-functionalized surfaces. To facilitate this, we
combined the classification procedure described above (applied to
each frame of the video) with a cell tracking algorithm, described in
detail in the SI. The tracking analysis distinguishes the motion of
adhered cells between sequential frames from new adhesion events
and quantifies the total time spent by a cell on the surface before
detachment.

We showeight representative cell trajectories in Fig. 6a, b, four for
sRBC adhesion to laminin, and four for CAR-T cell adhesion to
E-selectin. We highlight three distinct types of adhesion events:
adhesion events with large displacements, adhesion events with small
displacements in the same direction as the flow, and adhesion events
with small displacements in the opposite direction of the flow. These
trajectories are generated for each adhered cell in an MBM video,
giving us a high-throughput approach to collect dynamical informa-
tion about large numbers of cells.

The adhesion duration distributions in Fig. 7 are one example of
the dynamical data that can be compiled through our method, corre-
sponding to thousands of individual trajectories. Figure 7a shows sRBC
adhesion to laminin, and Fig. 7b shows CAR-T cell adhesion to
E-selectin. In both cases there is a peak in the distribution at low
adhesion durations, corresponding to a large number of rapid
attachment/detachment events, but also a non-trivial proportion of
long-lived trajectories. At intermediate times, both plots are approxi-
mately power-law. At long times, the sRBC case continues the power-
law trend, while CAR-T cells experience more rapid decay. The power
law trend also applied to HbAA RBCs from healthy donors without
known hemoglobinopathies for short-lived RBC adhesion events and
was independent of oxygenation conditions for both HbSS and HbAA
RBCs (Supplementary Fig. 5). The longest adhesion durations (hun-
dreds of seconds) occur infrequently, but the number of events col-
lected by MBM is sufficiently large to resolve these rare cases.
Adhesion duration distributions are essential raw data for biophysical
modeling of bond dynamics between cells and surface proteins under
flow conditions, providing a valuable starting point for future studies.

MBM also has the potential of revealing more subtle dynamical
relationships that have not been systematically explored, for example
how morphological features of cells are correlated with dynamical
behaviors at the single-cell level. A longstanding question about sRBCs
is whether elongated, irreversibly sickled cells are more adhesive to
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Fig. 4 | Size and eccentricity distributions under whole blood flow. Joint prob-
ability distributions for the size and eccentricity of (a) objects adhered to laminin
functionalized channels from 174 images (N = 162,207) and (b) objects adhered to
E-selectin functionalized channels from 2 videos (N = 5919). Marginal distributions

of size and eccentricity are shown on the top and right axes respectively. Dotted
vertical lines indicate the size threshold used for classification, with objects above
the threshold corresponding to sRBCs in panel (a) or CAR-T cells in panel (b).
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endothelium than sickle discocytes23. In Fig. 8a, we show MBM data
for the relationship between average sRBC eccentricity (calculated
over the entire cell trajectory) and adhesion duration to laminin,
revealing a significant negative trend (p <0.03, linear regression): cells
with longer adhesion durations are slightly less elongated on average.
In Fig. 8b, we show that such a trend is not statistically significant
between average eccentricity and adhesion duration to E-selectin for
CAR-T cells (p >0.07, linear regression).

We can also investigate how the orientation of the cell motion
relative to the flow direction influences the dynamics. For each cell
trajectory, the initial and final position (before detachment) defines a
net displacement, which divided by adhesion duration gives us an
average velocity vector. The left column of Fig. 9 shows distributions
of the components of this vector parallel to and perpendicular to the
flow direction. Moreover, we can correlate the average velocity com-
ponents with adhesion duration (right column of Fig. 9).

This analysis reveals a variety of interesting features. The left
panel of Fig. 9a shows sRBC velocities on laminin, projected parallel to
the flow direction. The distribution is peaked at zero velocity but has
contributions from both positive (with flow) and negative (against
flow) velocities. As expected, the distribution is distinctly asymmetric:

cells are less likely to move against the flow. The right panel of Fig. 9a
bins the sRBCs by adhesion duration and depicts the average parallel
velocity for each bin. The shortest adhesion durations have the largest
velocities, in agreement with the sample trajectories of Fig. 6a. For
velocities perpendicular to the flow direction (Fig. 9b, left) the asym-
metry in thedistribution vanishes: average velocities in either the upor
down perpendicular direction are equally likely. The large tail at
positive velocities that was visible in the parallel distribution also dis-
appears. In order to achieve velocities with magnitudes much greater
than 2 μm/s one clearly requires the assistance of flow in the same
direction as the cell motion.

Figure 9c analyzes the motility of CAR-T cells adhered to E-
selectin, parallel to the flow direction. We noted in Fig. 6 that CAR-T
cells appeared to bemoremobile than sRBCs, and this characteristic is
validated in the distribution of average velocities (Fig. 9c, left). Relative
to the velocity distribution of sRBCs (Fig. 9a, left), we see about an
order of magnitude higher probabilities at short-intermediate positive
velocities. In fact, there is a subsidiary peak in the CAR-T distribution
around 2μm/s, in addition to the zero-velocity peak. This trend is also
evident when looking at the correlation of velocity with adhesion
duration (Fig. 9c, right). On topof the overall trendof shorter adhesion

Fig. 5 | Validation and benchmarking ofMBM. aWe establish inter-experimenter
reproducibility for adhered sickle red blood cell (sRBC) counts for different
experimental durations, carried out by two different researchers. Shaded regions
around each line are one standard deviation, dots represent the average count for
each researcher. The cell adhesion results show no significant difference when two
different experimenters perform MBM using the aliquots of the same patient

sample. bWe establish the sensitivity of MBM for adhered sRBC counts. For all but
one data point, the coefficient of variation is <25%, an important benchmark for the
precision of bioanalytical methods. Finally, we establish the accuracy of MBM in
counting (c) sRBCs adhered to laminin and (d) CAR-T cells adhered to E-selectin,
respectively. There is a strong agreement between automated and humancounts in
both cases, as indicated by the R2 value being close to one.
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durations associated with higher velocities, we see that CAR-T cells
experience an order of magnitude higher velocity at short-
intermediate adhesion durations relative to sRBCs.

Figure 9 is just one illustration of the versatility of MBM as an
in vitroplatform for blood cellmotility analysis,which to date hasbeen
exclusively performed with intravital microscopy. Another promising
area for exploration is the impact of environmental signals onmotility,
for example, CD19 activation of CAR-T cells. The majority of CAR-T
cells evaluated for B-cell malignancies target CD19. T cells express
programmed cell death protein 1 (PD-1) during activationandYouet al.
used intravital microscopy to show that T cell motility was propor-
tional to PD-1 expression24,25. As an in vitro alternative, we compare
CAR-T velocities on E-selectin (parallel to the flow) with and without
CD19 activation by using MBM (Fig. 10). Figure 10a shows the velocity
distribution for unactivated cells as a control reference, the same
distribution as in Fig. 9c but plotted on a linear scale. The velocity bins
are color-coded by different velocity regimes. In the absence of CD19
activation, adhered cells fall mainly into relatively immobile popula-
tions (the peak around zero velocity, highlighted in purple) and those
moving at below 2μm/s (light blue). As expected, the small velocity
population consists mainly of cells that adhere at one location, while
the mobile cells show a range of trajectory lengths. CD19 activation
significantly enhances the mean velocity of CAR-T cells rolling on
E-selectin (Fig. 10b, c, p < 0.001, t-test). We also use the same color
scale to label and show the trajectories in Fig. 10d, e by their respective
velocity regimes. Notably, more complicated motile leukocyte beha-
vior such as crawling can also be captured with MBM (Supplementary
Fig. 6 and Supplementary Movie 1).

Microfluidics holds great promise for research into the cellular
interactions that take place in blood, and as a result, various micro-
scopy approaches have been developed which complement micro-
fluidic systems. Yet faithfully recreating in vivo conditions in
microfluidics is a challenging task, and a bottleneck for its wider

adoption. The further a microfluidic study veers from true-to-life
conditions, the less physiologically relevant the results become.
Therefore, if we are to generate truly meaningful results under in vitro
conditions, our methods should strive to reproduce the environment
of the microvasculature as much as possible. Researchers have
developed a variety of approaches to mimic the microvasculature26,27,
but the blood—the main constituent with its full complexity—has
always been missing in these microfluidic systems. MBM enables
researchers to investigate the dynamics of cellular interactions in the
presence of whole blood flow. This means that many of the relevant
physical forces and biochemical signals which modulate cellular
interactions will be present during an experiment. Environmental
completeness would be especially crucial when the functional path-
ways of cells are actively regulated by their environment. One example
of such regulation is the influence of the complement and renin-
angiotensin systems on leukocyte function28. Therefore, we anticipate
that MBMwill have a formative effect onmicrofluidic studies. Even so,
a new method is only as good as the available tools for analysis. Our
machine learning pipeline for MBM can automatically analyze hun-
dreds of thousands of observed adhesion events. Typically, the task of
completing this analysis manually would be impossible, as the amount
of time required, or the number of people required, would be far too
large. Our automated analysis approach is flexible andmitigates errors
due to individual human biases in cell counting and classification.

The applications of MBM are wide-ranging for both fundamental
investigations into biophysical mechanisms and clinical studies. For
example, adhesion duration distributions are crucial for studies of
force-dependent binding/unbinding of protein complexes and cell-cell
interactions29. MBM can complement existing approaches in this area
like numerical simulations or force spectroscopy experiments (i.e.,
atomic force microscopy)30–36. MBM could provide a valuable com-
parisonpoint for bond lifetime simulations, adding extra physiological
realismdue to the blood flow. Because of its ease of implementation, it

Fig. 7 | Probability distributions of adhesion durations. Shown are (a) sickle red
blood cell (sRBC) adhesion to laminin (N = 14,229) and (b) CAR-T cell adhesion to
E-selectin (N = 7671).
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Fig. 6 | Example adhered cell trajectories. Shown are (a) sickle red blood cell
(sRBC) motion on laminin and (b) CAR-T cell motion on E-selectin. Generally
speaking, the longer a cell is adhered, the smaller the displacement of the cell in the
direction of the flow. CAR-T cells tend to have higher motility relative to sRBCs.
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is also accessible to a broader research community than atomic force
microscopy techniques. On the clinical front, there are a variety of
promising applications for specific diseases. In the case of cancer,
MBMcould help visualize crucial interactions of circulating tumor and
endothelial cells with improved physiological accuracy37. It can also be
utilized to distinguish and isolate rare circulating tumor cells from
billions of other cells flowing through amicrofluidic channel. For sickle
cell disease, MBM could serve as a means to understand how sRBCs
behave under changes in blood pressure, flow rates, and viscosity, as
well as concentrations of relevant constituents in whole blood. Fur-
thermore, the concentration of adhered sRBCs, as well as the mor-
phological characteristics of the cells may be used to monitor if an
individual with sickle cell disease is undergoing a flare-up, or if they are
in an asymptomatic diseased state. Other possible disease contexts
where MBM may be useful are solid tumor malignancies. MBM may
help us characterize the motility of immune cells including T-cells and
macrophages with great physiological relevance. As a final example,
MBM could be used to further our understanding of autoimmune
diseases, such as rheumatoid arthritis, where leukocyte recruitment is
an important part of the pathology. For example, MBM can be used in
tandem with joint on a chip systems, where complex interactions
among blood cells, endothelium, and skeletal components are studied
with in vitro experiments38.

Aside from clinical studies, MBM with automated analysis has the
ability to efficiently gather large quantities of data thatmay provide an
ideal basis for theoretical modeling of cellular adhesion mechanics.
For example, the velocity distributions parallel to the flow direction
from Fig. 9 qualitatively resemble those of molecular motors that are
capable of forward and backward stepping along a cytoskeletal track,
which can be described via coarse-grained kinetic models of the
underlying biochemical cycle39. Similar mathematical approaches
could be brought to bear on the cell velocity data, giving us a more
complete picture of the cell interactions with the endothelium that
give rise to these kinds of dynamics. The excellent statistics of the data
set is crucial in this regard since in principle it enables us to distinguish
between competing models.

As with any experimental approach, there are also limitations. In
sufficiently complex scenarios where large densities and/or multiple
cell types adhere to the surface, extracting single-cell dynamical
information may become more difficult. Large densities, with many
overlapping adhered cells, could impede the video analysis in deter-
mining if two cells in consecutive frames are the same or not. Overlaps

were rare in the exampleswe investigated, allowing for straightforward
extraction of cell trajectories. In physical systems where this would be
an issue, however, more sophisticatedmethods could be incorporated
into MBM analysis workflow for tracking cells40,41. Similarly, both the
sRBC and CAR-T datasets we focused on in the main text involve a
single adhered cell type, which could be identified reliably using a size
threshold. In cases with multiple cell types of similar sizes, we would
have to employ a more involved classification procedure, using other
morphological characteristics of the cells. The SI shows results from
one such example, where a convolutional neural network was trained
to reliably distinguishCAR-T cell adhesion to P-selectin from red blood
cells, which also adhere to the surface. Thus we believe all these lim-
itations may be substantially addressed with additions to the data
analysis approach. Extended exposure time inherently offsets the
eccentricity estimations of the interacting cells. The magnitude of the
offset would depend on the velocity of the cells. Eccentricity estima-
tion of highmotility cells includingT-cellsmaybe significantly affected
by this issue. In a typical scenario, a perfectly round CAR-T cell with a
size of 8μm, moving with a mean velocity of 2μm/s would travel
2.4μm during the 1200ms exposure time of the camera. In this case,
the resulting eccentricity estimate would be offset by 0.32. This effect
can be accounted for using a velocity-based calibration curve for the
major axis a, during the eccentricity e calculation:

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
=a2

corr

q

ð1Þ

where b is the minor axis length and the corrected major axis length
acorr would be given by:

acorr =ameas � V celltexp, ð2Þ

where Vcell is the velocity parallel to flow, texp is the exposure time of
the camera, and ameas is the measured major axis length. Strictly
speaking, the major axis might not align entirely with the velocity
vector, in which case, the calculation would become more compli-
cated. Even so, we believe this simple adjustment should mostly
account for changes in eccentricity due to flow velocity.Weperformed
eccentricity offset calibration based on velocity for CAR-T cell
adhesion to E-selectin in Figs. 4 and 8.

In summary, MBM is a robust, easy-to-implement, high-
throughput method to study cell adhesion dynamics in the presence
of blood flow. Its flexibility allows for broad deployment in both

Fig. 8 | Relationships of adhesion duration and morphological features of
adhered cells underwhole bloodflow.Average eccentricity vs. adhesion duration
for (a) sickle red blood cell (sRBC) adhesion to laminin under normoxic conditions
(N = 14,229), and (b) CAR-T cell adhesion to E-Selectin (N = 5919). Dotted lines show
95% confidence intervals for the line of best fit. The blue histograms show the

distribution of average eccentricities. There is a significant negative relationship
between average eccentricity and adhesion duration for sickle RBCs, but not for
CAR-T cells (p =0.03, p =0.07, each panel respectively, linear regression). Bluedots
represent means, and whiskers for each scatter point are one standard deviation.
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clinical contexts and studies of fundamental biophysical mechanisms
underlying cell adhesion. Combined with automated analysis for cell
classification and tracking, it promises to be a general platform for
elucidating how interactions with the complex whole blood environ-
ment influence and regulate cellular adhesion and interactions.

Methods
Blood sample collection and microfluidic adhesion assays
All research complies with the ethical regulations, approved by Uni-
versity Hospitals Institutional Review Board office (#05-14-07C). Sur-
plus EDTA-anticoagulated whole blood samples were collected with
the informed consent of the subjects under a protocol registered at
www.clinicaltrials.gov as NCT02824471, “Sickle Cell Disease Biofluid
Chip Technology”. The microfluidic platforms were fabricated by
lamination of 50μm laser-cut double-sided adhesive film between
APTES coated glass slide and 3.2mm thick Poly(methyl methacrylate)
(PMMA) cover42. Protein functionalization of the microchannels was
achieved by injecting the channels with N-g-Maleimidobutyryloxy
succinimide ester (0.28% vol/vol) followed by incubation with desired
protein for 1.5 h at room temperature. For studying the adhesion of
HbAA-containing red blood cells (healthy control with normal

hemoglobin), unprocessed whole blood samples from healthy donors
with no known hemoglobinopathies were used. For studying the
adhesion of sRBCs, unprocessed whole blood samples from subjects
with homozygous sickle cell disease (HbSS) were used and micro-
channels were coated with laminin (murine, laminin-1). For demon-
strating Jurkat or CAR-T motility, the microchannels were coated with
either P- or E-selectin (human, CD62P and CD62E). For microfluidic
surface endothelialization, the channels were incubated overnight at
4 ∘C with 10% human fibronectin (Sigma-Aldrich). HUVECs (Lonza)
were then seeded into each channel at a concentration of about 10
million cells/μL and channels were cultured under flow conditions
createdby a peristaltic pump for 2–3days until confluent.Wholeblood
samples from subjects with no hemoglobinopathies were first leuko-
depleted and then premixed with Jurkat or CAR-T cell populations at
40% hematocrit in Hank’s buffer containing calcium to retain the leu-
kocyte activity by replenishing EDTA-depleted Ca++ in blood samples
(Supplementary Fig. 7). HbSS whole blood was diluted 1:4 with PBS for
the dilution experiment. Hypoxic conditions (SpO2 of ~83% in the
blood sample), were achieved using an in-house developedmicro-tube
gas exchanger23. Highly gas permeable inlet tubing was fed through an
impermeable tube which was connected to a 4 psi 95/5% N2/CO2

Fig. 9 | Velocities of cells under whole blood flow. Each row shows a velocity
probability distribution (left) and a corresponding average velocity versus adhesion
duration plot (right). Three cases are depicted: a Parallel to the flow direction for
sickle red blood cell adhesion (sRBC) to laminin (N = 14,229). The probability dis-
tribution shows that a large majority of adhesion events have near-zero velocities.
b Perpendicular to the flow direction for sickle red blood cell (sRBC) adhesion to
laminin. Because this is the perpendicular to flow direction, we expect the

distribution to approach that of a random walk, and the average velocities to be
near zero. c Parallel to flow for CAR-T cell adhesion to E-selectin (N = 7671). When
comparing this row to (a), we see that CAR-T cells adhering to E-selectin tend to
have largerparallel toflowvelocities. Perpendicular toflowanalysisof CAR-T cells is
not shown, but the results are similar to those of (b). Error bars denote one stan-
dard deviation.
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mixture source to allow parallel-flow gas exchange. To prevent non-
specific cellular interactions, microchannels were incubated with
bovine serum albumin at 4 ∘C overnight, and additionally, 250μl of
bovine serum albumin (20mg/mL) was injected into the micro-
channels at room temperature with a 5μl/min flow rate 2 h prior to the
experiments.

CAR T-cell culture
CAR T-cells were obtained from the Hematopoietic Biorepository and
Cellular Therapy core at Case Western Reserve University. These cells
manufactured according to ethics and guidelines from University
Hospitals Cleveland Medical Center (UHCMC IRB# 03-18-01C). Briefly,
CD3+ T cells were collected from whole blood samples using the Mil-
tenyi CD3 T cell isolation kit (North Rhine-Westphalia, Germany) and
transduced with a CD19-directed CAR vector. Cells were cultured in
TexMACS media with IL-7 and IL-15 (Miltenyi Biotec; North Rhine-
Westphalia, Germany). Cells were then cryopreserved until experi-
mentation. Upon thawing patient samples, cells were cultured in RPMI
1640 medium with 10% fetal bovine serum, 100 μ/mL pen/strep
(Thermo Fisher, Waltham, MA, USA), 2mM glutamax (Thermo Fisher,
Waltham, MA, USA). For CD19 activation, CAR-T cells were added to a
solution of IL-2 culture media containing CD19+ RAJI cells obtained
from American Type Culture Collection (Manassas, VA, USA).

Motion blur microscopy
Microchannels were visualized with Olympus CellSens software
using an Olympus IX83 inverted microscope and QImaging EXi
Blue CCD camera with 10× objective (numerical aperture 0.3, pixel
area 6.5 μm2). To induce motion blur, camera exposure was set to

1.2 s. Images and videos of the microchannel surface were saved
uncompressed to reduce noise. Frame rates of the videos were
kept at (1/1.2) s−1, which is the maximum frame rate for a 1.2 s
exposure time. High integration time was compensated for by
adjusting the voltage of the light source to 2.7 V (maximum 12 V). It
should be noted that it is key to adjust the focus map for the
surface of interest before the microchannels are injected with the
sample. Unprocessed or leukodepleted whole blood was with-
drawn into a syringe which then was loaded into a constant dis-
placement syringe pump (NE-1000, New Era Pump Systems Inc.).
MBM with automated analysis requires a minimum flow velocity of
~150 μm/s in the background to create theminimumparticle streak
forMBM. Higher background flow velocity yields better distinction
of cellular interactions. 50/50 light distribution mode between the
camera and the eyepieces was selected, which allows doubling
the exposure time at the same brightness level. We performed all
the experiments in a dark room. This is important because MBM is
a low-light technique and room lights, or sunlight, may introduce
non-uniformity to image lightness. The flow velocity was kept at
~500 μm/s for 20min for demonstrating sRBC adhesion to laminin.
For the demonstration of CAR-T cell adhesion to E-selectin, the
flow velocity was swept linearly from 500 μm/s to 3500 μm/s
in 10min.

Automated image analysis
To analyze MBM images, we developed an automated analysis proce-
durewith twodistinct phases. Phase 1 performs segmentation onMBM
images at the pixel level and phase 2 classifies groups of pixels by cell
type. After classification, we can perform further analysis on the
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classified cells (i.e., morphology characterization and trajectory
tracking). While we focus on three experimental examples in this
paper, our approach can easily be generalized to other systems.

Phase 1: pixel segmentation. Phase 1 uses amachine learning network
to segment every pixel in an MBM image into one of two categories:
adhered or background. Adhered pixels correspond to a pixel of the
imagebelonging to an adheredobject,with the remainingpixels falling
into the background category.

The segmentation network is based on a modified U-Net archi-
tecture from our previous work43 (further details are provided in
the SI). To train the network, one or more MBM images are chosen as
training/validation images, and the rest of the images are set aside for
testing. A labeled mask of the training/validation images is created, by
manually labeling each pixel as adhered or background. Each labeled
training/validation mask, as well as each training/validation image, is
then split into tiles of size 150× 150 pixels, which are subsequently
resized to 128 × 128 pixels, as that is the required input of the seg-
mentation network. Once all of the training/validation tiles are com-
piled, we can then train the segmentation network for our
particular task.

For the purposes of this paper, we have trained and used two
distinct segmentation networks, one for analysis of sRBC adhesion to
laminin, and one for analysis of CAR-T cell adhesion to E-selectin. The
first networkwas trained/validatedon tiles froma subset of 3 out of 177
MBM images. The training tiles are drawn from one of the three ima-
ges,while the validation tiles are drawn fromthe twoother images. The
remaining 174 images were set aside for testing the network’s ability to
count adhered sRBCs (Fig. 5c). In total, there were 2163 tiles used for
training/validation. The second network was trained on tiles from the
frames of three MBM video sources. For each video source, ten evenly
spaced frames were extracted from the final 100 frames, giving 30
frames in total for training/validation. The training tiles are drawn from
one of the video sources, while the validation tiles are drawn from the
two other video sources. 169 of the remaining frames from one of the
video sources were set aside for testing the network’s ability to count
adhered CAR-T cells (Fig. 5d). In total, there were 767 tiles used for
training/validation. In both cases we implemented a stratified split of
70%/20%/10% training/validation1/validation2, where validation set 1
was used for validating during individual training sessions, and vali-
dation set 2 was used for comparing trained models against one
another for the purposes of hyperparameter optimization.

Phase 2: cell classification. The output of the segmentation network
is a fully segmented image, where each pixel belongs to one of two
classes. In the second phase of the analysis, groups of adhered pixels
are extracted and classified. Generally speaking, the cell identification
task falls into one of two cases. In the first case, only one adhered cell
type is expected to bedistinguishable in theMBM image. In the second
case, two or more cell types are expected to be distinguishable in the
MBM image. For brevity, wewill only highlight the single-cell type case
in the main text, and interested readers can refer to the SI for infor-
mation on the multiple-cell type case.

When only a single cell type of interest is expected to adhere to
the functionalized channel, we can classify groups of adhered pixels
using a physical property of the group. For example, when we look at
the attachment of sRBCs to laminin or CAR-T cells to E-selectin, the
vast majority of groups of adhered pixels correspond to one cell type.
In this case, we can use a size threshold to distinguish adhered cells
from groups of adhered pixels falsely classified by the segmentation
network as adhered.

When training both segmentation networks, the size threshold for
the classification of groups of adhered pixels was optimized with the
objective to produce the closest agreement between human and
machine counts of relevant cells. To find the optimum threshold, an

array of threshold values can be used to count cells for an array of
inputs. The automated cell counts can then be compared to manual
cell counts, and the threshold which produces the greatest agreement
can be chosen. For single-cell type analysis, two optimum thresholds
were found, one for sRBC adhesion to laminin and one for CAR-T cell
adhesion to E-selectin.

In the laminin case, 174 MBM images were analyzed using a
trained segmentation network, and size thresholds in the range
0–200px (corresponding to the area of the adhered pixel group), in
increments of ten, were used to produce sRBC counts. Agreement
between human and machine counts was checked for each threshold
value, and the optimum threshold was found to be 90 pixels (38μm2),
where groups of adhered pixels with a size greater than 90 pixels were
classified as sRBCs, and groups of adhered pixels with size less than
90pixels were classified as other. For the CAR-T case, 172 frames from
an MBM video were analyzed using a trained segmentation network,
and size thresholds in the range 0–200px, in increments of ten, were
used to produce CAR-T cell counts. The optimum thresholdwas found
to be 30pixels (13μm2).

Post-classification analysis. After phase 1 and phase 2 are com-
pleted, the groups of adhered pixels that are positively classified as
the cell type(s) of interest can be further analyzed. Properties like
the size, eccentricity, and position of each individual cell are easily
obtainable. These static data can be analyzed individually or
aggregated together to produce group statistics. When MBM video
is available, we can analyze the dynamics of cells under flow. We
define a parameter for each adhesion event called the survival time
—the time from when a cell attaches to the surface until it detaches
or leaves the frame. With the survival time in hand, as well as the
static data for each frame, we can generate dynamic data for each
cell. Individual cell dynamics like average velocity, average size,
and average eccentricity can be found, or, we can aggregate cells
and produce group statistics like mean-squared displacement, or
distributions of dynamic quantities.

Identification rules for tracking moving cells in MBM videos. MBM
video analysis brings forth additional challenges beyond those of
individual images. In particular, we need to track cells over time,
requiring us to determine if cells in consecutive frames are the same
cell or not. Two distinct issues arose when making this determination:
duplicate counts, and tracking motile cells.

Duplicate counts occur when the segmentation network erro-
neously segments a single group of adhered pixels as two distinct
groups of adhered pixels, whose edges are close, but not touching. To
minimize the duplicate counts, we checked to see if the centroids of any
two groups of adhered pixels were within 50 pixels (1 px =0.322μm) of
one another. Also, the shortest distance between the edges of all such
pairs was computed, and if this distance was 5 pixels or fewer for any
pair, the two groups of adhered pixels were considered to be one. In
this case, the two groups of adhered pixels were replaced by the
smallest polygon that contains them, known as the convex hull. One can
imagine this shape as the result of stretching a rubber band over the
two groups of adhered pixels and letting it rest taut.

Another case of duplicate counting occurs if phase 2misclassified
an adhered cell as other for any amount of frames between two posi-
tive classifications. This error would cause the analysis to detect a new
group of adhered pixels, despite it being the same cell. We avoid this
by giving each adhesion event a disappearance allowance. Each cell for
an adhesion event was allowed to disappear for a number of frames
before considering the adhesion event completed. If a cell disappeared
for a number of frames below the allowance and then reappeared, the
adhesion event would continue as if the misclassification never
occurred. For sRBCs, we allowed cells to go undetected for up to two
frames and still count as the same cell. For CAR-T cells, they could go

Article https://doi.org/10.1038/s41467-024-51014-4

Nature Communications |         (2024) 15:7058 10



undetected for up to nine frames. These frame thresholds helped us to
not preemptively end adhesion events.

Interacting motile cells are constantly adhering, detaching, and
persisting in their adhesion to the surface, and as such, the results of
analyzing many frames present a complex picture of many adhesion
events happening at various times. Thus, we devised rules by which to
determine if a cell in consecutive frameswas a new adhesion event or a
continuation of a prior adhesion event. If a positively identified group
of adhered pixels was within 5 pixels in any direction of a positively
identified group of adhered pixels in the previous frame, the group of
adhered pixels was classified as a continuation of the adhesion event.
Otherwise, the positively identified group of adhered pixels was clas-
sified as the beginning of a new adhesion event. Also, if a positively
identified group of adhered pixels was within 5 to 30pixels in the
direction of the flow, this group of adhered pixels was classified as a
motile adhesion event. These movement rules plus the frame thresh-
olds protected us fromsplitting a singular adhesion event into two due
to any misclassifications by the automated analysis.

Statistical methods
Statistical analyses were performed using the Microsoft Excel Real
Statistics Resource Pack add-in. p < 0.05 was chosen to indicate a sig-
nificant difference.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw image data and all data generated in this study are available at the
Open Science Framework repository: https://osf.io/uy3rx. Source data
are provided with this paper.

Code availability
All the code associated with theMBM analysis can be found at: https://
github.com/hincz-lab/motion-blur-microscopy44.

References
1. Sai, J., Rogers, M., Hockemeyer, K., Wikswo, J. P. & Richmond, A.

Study of chemotaxis and cell–cell interactions in cancer with
microfluidic devices. in Methods in Enzymology, vol. 570 (Else-
vier, 2016).

2. Hines, P. C. et al. Flow adhesion of whole blood to P-selectin: a
prognostic biomarker for vaso-occlusive crisis in sickle cell disease.
Br. J. Haematol. 194, 1074–1082 (2021).

3. Man, Y. et al. Leukocyte adhesion to P-selectin and the inhibitory
role of crizanlizumab in sickle cell disease: A standardized micro-
fluidic assessment. Blood Cells Mol. Dis. 83, 102424 (2020).

4. Hernandez, A. A. et al. An allosteric shift in CD11c affinity activates a
proatherogenic state in arrested intermediate monocytes. J.
Immunol. 205, 2806–2820 (2020).

5. Barshtein, G., Zelig, O., Gural, A., Arbell, D. & Yedgar, S. Determi-
nation of red blood cell adhesion to vascular endothelial cells: A
critical role for blood plasma. Colloids Surf. B Biointerfaces 210,
112226 (2022).

6. Gutierrez, M., Fish, M. B., Golinski, A. W. & Eniola-Adefeso, O. Pre-
sence of rigid red blood cells in blood flow interferes with the
vascular wall adhesion of leukocytes. Langmuir 34, 2363–2372
(2018).

7. Buscher, K., Marcovecchio, P., Hedrick, C. C. & Ley, K. Patrolling
mechanics of non-classical monocytes in vascular inflammation.
Front. Cardiovasc. Med. 4, 80 (2017).

8. Cabrales, P. et al. The macrophage stimulating anti-cancer agent,
RRx-001, protects against ischemia-reperfusion injury. Expert Rev.
Hematol. 10, 575–582 (2017).

9. Cheburkanov, V., Keene, E., Pipal, J. & Yakovlev, V. V. Towards
in vivo larynx imaging: assessing mechanical properties of larynx
with Brillouin microscopy. in Optical Biopsy XX: Toward Real-Time
Spectroscopic Imaging and Diagnosis, vol. 11954 (SPIE, 2022).

10. Hwang, K. et al. Handheld endomicroscope using a fiber-optic
harmonograph enables real-time and in vivo confocal imaging of
living cell morphology and capillary perfusion.Microsyst. Nanoeng.
6, 1–11 (2020).

11. Wang, F. et al. In vivo NIR-II structured-illumination light-sheet
microscopy. Proc. Natl Acad. Sci. 118, e2023888118 (2021).

12. Condeelis, J. &Weissleder, R. In vivo imaging in cancer.Cold Spring
Harb. Perspect. Biol. 2, a003848 (2010).

13. Sundd, P. et al. ‘Slings’ enable neutrophil rolling at high shear.
Nature 488, 399–403 (2012).

14. da Silva, B. C. G., Tam, R. & Ferrari, R. J. Detecting cells in intravital
video microscopy using a deep convolutional neural network.
Comput. Biol. Med. 129, 104133 (2021).

15. Gregorio da Silva, B. C., Carvalho-Tavares, J. & Ferrari, R. J.
Detecting and tracking leukocytes in intravital video microscopy
using aHessian-based spatiotemporal approach.Multidimens. Syst.
Signal Process. 30, 815–839 (2019).

16. Jennissen, H., Sanders, A., Schnittler, H. &Hlady, V. TIRF-rheometer
for measuring protein adsorption under high shear rates: con-
structional and fluid dynamic aspects.Mater. Werkst. Entwickl. Fert.
Pr.üfung Eigenschaften Anwend. Tech. Werkst. 30, 850–861 (1999).

17. Pisapati, A. V. et al. Characterizing single-molecule conformational
changes under shear flow with fluorescence microscopy. J. Vis.
Exp. 155, e60784 (2020).

18. Avtaeva, Y. N., Mel’nikov, I., Okhota, S., Zozulya, N. & Gabbasov, Z.
Kinetics of platelet adhesion to protein-coated surface in whole
blood samples at high flow rates. Bull. Exp. Biol. Med. 169,
229–232 (2020).

19. Goreke, U., Bode, A., Yaman, S., Gurkan, U. A. & Durmus, N. G. Size
and density measurements of single sickle red blood cells using
microfluidic magnetic levitation. Lab Chip 22, 683–696 (2022).

20. Man, Y. et al. Occlusionchip: a functional microcapillary occlusion
assay complementary to ektacytometry for detection of small-
fraction red blood cells with abnormal deformability. Front. Physiol.
13, 954106 (2022).

21. An, R. et al. Sickle red blood cell-derived extracellular vesicles
activate endothelial cells and enhance sickle red cell adhesion
mediated by von Willebrand factor. Br. J. Haematol. 201, 552–563
(2023).

22. Center for Drug Evaluation and Research (CDER), Center for
Veterinary Medicine (CMV). Guidance for Industry, Bioanalytical
Method Validation (U.S. Department of Health and Human Services,
Food and Drug Administration, 2018).

23. Goreke, U. et al. Membrane bending and sphingomyelinase-asso-
ciated, sulfatide-dependent hypoxic adhesion of sickle mature
erythrocytes. Blood Adv. 7, 2094–2104 (2023).

24. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhi-
bitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

25. You, R. et al. Active surveillance characterizes human intratumoral T
cell exhaustion. J. Clin. Investig. 131, e144353 (2021).

26. Wong, K. H., Chan, J. M., Kamm, R. D. & Tien, J. Microfluidic models
of vascular functions. Annu. Rev. Biomed. Eng. 14, 205–230 (2012).

27. Goreke, U. et al. Catch bonds in sickle cell disease: shear-enhanced
adhesion of red blood cells to laminin. Biophys. J. 122,
2564–2576 (2023).

28. Bekassy, Z., Lopatko Fagerström, I., Bader, M. & Karpman, D.
Crosstalk between the renin–angiotensin, complement and
kallikrein–kinin systems in inflammation. Nat. Rev. Immunol. 22,
411–428 (2022).

29. Bell, G. Models for the specific adhesion of cells to cells. Science
200, 618–27 (1978).

Article https://doi.org/10.1038/s41467-024-51014-4

Nature Communications |         (2024) 15:7058 11

https://osf.io/uy3rx
https://github.com/hincz-lab/motion-blur-microscopy
https://github.com/hincz-lab/motion-blur-microscopy


30. Hillringhaus, S., Dasanna, A. K., Gompper, G. & Fedosov, D. A.
Stochastic bond dynamics facilitates alignment of malaria parasite
at erythrocyte membrane upon invasion. eLife 9, e56500 (2020).

31. Anvari, S., Osei, E. & Maftoon, N. Interactions of platelets with cir-
culating tumor cells contribute to cancer metastasis. Sci. Rep. 11,
1–16 (2021).

32. Lansche, C. et al. The sickle cell trait affects contact dynamics and
endothelial cell activation in Plasmodium falciparum-infected ery-
throcytes. Commun. Biol. 1, 1–14 (2018).

33. Strnad, M. et al. Nanomechanical mechanisms of Lyme disease
spirochete motility enhancement in extracellular matrix. Commun.
Biol. 4, 1–9 (2021).

34. Arora, N., Hazra, J. P. & Rakshit, S. Anisotropy in mechanical
unfolding of protein upon partner-assisted pulling and handle-
assisted pulling. Commun. Biol. 4, 1–10 (2021).

35. Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2
binding to the ACE2 receptor. Nat. Commun. 11, 1–10 (2020).

36. Li, N. et al. Ligand-specific binding forces of LFA-1 and Mac-1 in
neutrophil adhesionandcrawling.Mol. Biol. Cell29, 408–418 (2018).

37. Priyadarshani, J., Roy, T., Das, S. & Chakraborty, S. Frugal approach
toward developing a biomimetic, microfluidic network-on-a-chip
for in vitro analysis of microvascular physiology. ACS Biomater. Sci.
Eng. 7, 1263–1277 (2021).

38. Paggi, C. A., Teixeira, L. M., Le Gac, S. & Karperien, M. Joint-on-chip
platforms: entering a new era of in vitro models for arthritis. Nat.
Rev. Rheumatol. 18, 217–231 (2022).

39. Vu, H. T., Chakrabarti, S., Hinczewski, M. & Thirumalai, D. Discrete
step sizes of molecular motors lead to bimodal non-gaussian
velocity distributions under force.Phys. Rev. Lett. 117, 078101 (2016).

40. Kok, R. et al. OrganoidTracker: efficient cell tracking usingmachine
learning and manual error correction. PLoS ONE 15,
e0240802 (2020).

41. Aragaki, H., Ogoh, K., Kondo, Y. & Aoki, K. LIM tracker: a software
package for cell tracking and analysis with advanced interactivity.
Sci. Rep. 12, 2702 (2022).

42. Alapan, Y. et al. Sickle cell disease biochip: a functional red blood
cell adhesion assay for monitoring sickle cell disease. Transl. Res.
173, 74–91 (2016).

43. Praljak, N. et al. Integrating deep learning with microfluidics for
biophysical classification of sickle red blood cells adhered to
laminin. PLoS Comput. Biol. 17, e1008946 (2021).

44. Shipley, B. & Gonzales, A. Motion blur microscopy, motion-blur-
microscopy, https://doi.org/10.5281/zenodo.11642913 (2024).

Acknowledgements
Weexpress deep gratitude to Paolo F. Caimi at theCaseComprehensive
Cancer Center and Cleveland Clinic, Jane Reese Koc at the Hemato-
poietic Biorepository and Cellular Therapy Core at Case Western
Reserve University for sharing the CAR-T cells, and to Paul Tesar at the
CaseWestern Reserve University School of Medicine for sharing the cell
culture resources. This work was supported by the National Institutes of
Health awards U01AI176469, R42HL162214, R42HL160384,
K25HL159358, and National Science Foundation awards 1552782,
1651560, 2112202, 2332121. The authors acknowledgewith gratitude the
contributions of research participants and clinicians at Seidman Cancer
Center (University Hospitals Cleveland Medical Center).

Author contributions
U.G. and U.A.G. developed the idea. U.G., B.S., A.G., M.H., and U.A.G.
designed the study. U.G., M.T., O.S., W.J.W., and Y.M. performed the

experiments. U.G., B.S., A.G., and M.H. developed the automated algo-
rithm. U.G., B.S., A.G., M.T., O.S., Y.M., W.J.W., R.A., M.H., and U.A.G.
analyzed the data. U.G., B.S., A.G., M.T., O.S., W.J.W., M.H., and U.A.G.
discussed and interpreted the data. U.G., B.S., A.G., wrote the manu-
script, U.G., B.S., A.G., prepared the figures. M.H. and U.A.G. edited the
manuscript.

Competing interests
R.A., U.A.G., and Case Western Reserve University have financial inter-
ests in Hemex Health Inc. U.A.G., and Case Western Reserve University
have financial interests in BioChip Labs Inc. U.A.G. and Case Western
Reserve University have financial interests in Xatek Inc. U.A.G. has
financial interests in DxNow Inc. Financial interests include licensed
intellectual property, stock ownership, research funding, employment,
and consulting. Hemex Health Inc. offers point-of-care diagnostics for
hemoglobin disorders, anemia, and malaria. BioChip Labs Inc. offers
commercial clinical microfluidic biomarker assays for inherited or
acquiredblooddisorders. Xatek Inc. offers point-of-care global assays to
evaluate thehemostatic process. DxNow Inc. offersmicrofluidic andbio-
imaging technologies for in vitro fertilization, forensics, and diagnostics.
The competing interests of CaseWestern Reserve University employees
are overseen and managed by the Conflict of Interests Committee
according to a Conflict-of-Interest Management Plan. The remaining
authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-51014-4.

Correspondence and requests for materials should be addressed to
Michael Hinczewski or Umut A. Gurkan.

Peer review information Nature Communications thanks Nikita Genze,
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-51014-4

Nature Communications |         (2024) 15:7058 12

https://doi.org/10.5281/zenodo.11642913
https://doi.org/10.1038/s41467-024-51014-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow
	Results and discussion
	Overview of MBM with automated analysis
	MBM-based cell classification is reproducible and accurate
	MBM can provide high-throughput single-cell dynamic data

	Methods
	Blood sample collection and microfluidic adhesion assays
	CAR T-cell culture
	Motion blur microscopy
	Automated image analysis
	Phase 1: pixel segmentation
	Phase 2: cell classification
	Post-classification analysis
	Identification rules for tracking moving cells in MBM videos

	Statistical methods
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




