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We investigate diffusion-limited reactions between a diffusing particle and a target site on a
semiflexible polymer, a key factor determining the kinetics of DNA-protein binding and
polymerization of cytoskeletal filaments. Our theory focuses on two competing effects: polymer
shape fluctuations, which speed up association, and the hydrodynamic coupling between the
diffusing particle and the chain, which slows down association. Polymer bending fluctuations are
described using a mean field dynamical theory, while the hydrodynamic coupling between polymer
and particle is incorporated through a simple heuristic approximation. We validate both of these
through comparison to Brownian dynamics simulations. Neither of the effects has been fully
considered before in the biophysical context and we show they are necessary to form accurate
estimates of reaction processes. The association rate depends on the stiffness of the polymer and the
particle size, exhibiting a maximum for intermediate persistence length and a minimum for
intermediate particle radius. In the parameter range relevant to DNA-protein binding, the rate
increase is up to 100% compared with the Smoluchowski result for simple center-of-mass motion.
The quantitative predictions made by the theory can be tested experimentally. © 2010 American
Institute of Physics. �doi:10.1063/1.3352571�

I. INTRODUCTION

Reactions between semiflexible polymers and small mol-
ecules are ubiquitous in cells, playing a crucial role in a large
number of biological processes: examples include the inter-
action of gene-regulating proteins with specific target sites
on DNA, and the polymerization of DNA or structural pro-
teins such as actin and tubulin. Many of these reactions are
diffusion-limited1—the activation free-energy is negligible
compared with the thermal energy kBT and the reaction is not
hindered by other steric or conformational factors—so the
overall association speed therefore depends on the rate at
which the reactive molecules approach each other.

DNA-protein interaction has been the most widely stud-
ied process of this type,2,3 attracting attention since the first
measurement of the reaction rate between the lac repressor
and operator4 revealed that it far exceeds the three-
dimensional �3D� diffusion limit. The quest to identify the
underlying mechanism culminated in the seminal idea of fa-
cilitated diffusion by Berg, Winter, and von Hippel,5–7 but
the general description of DNA-protein interaction is still far
from complete. Although recent single molecule experiments
show evidence that certain proteins indeed make use of fa-
cilitated diffusion,8,9 the majority of measured reaction rates
for DNA-binding proteins2,10,11 do not exceed the Smolu-
chowski result for 3D diffusion.12 Thus, recent years have
seen extensive theoretical efforts13–17 revisiting the underly-

ing assumptions of facilitated diffusion, and examining it
anew in response to experimental advances.

Diffusion-controlled reactions with targets on flexible
polymers are a well-established subject in polymer physics,
with general analytical frameworks developed by Wilemski
and Fixman,18,19 and Szabo, Schulten, and Schulten20 de-
cades ago. Using the Wilemski–Fixman approach and a
Gaussian model for circular polymers, a study by Berg
looked at the influence of internal DNA motion on the bind-
ing of proteins.21 However, little is known about the role of
chain stiffness, and both Berg’s study and the classic poly-
mer reaction rate theories do not include hydrodynamics.
This is a significant oversight, because solvent-mediated in-
teractions modify not only the approach of the particle to the
target site but also the fluctuation of the entire polymer con-
tour, and thus all time scales involved in the dynamics.
Moreover, the two effects are in opposition: polymer fluctua-
tions lead to the target site exploring a larger configurational
space than simple center-of-mass diffusion and hence the
association rate is enhanced; the hydrodynamic coupling be-
tween the particle and coil, on the other hand, reduces their
relative mobility, decreasing the rate. The observed binding
rate is a subtle competition between these two phenomena.
As experiments are providing an ever more detailed picture
of biological reactions at the single molecule level, we need
theories that begin to grapple with the full complexity of
polymer-particle diffusive motion.

The paper is organized as follows: in Sec. II, we briefly
review the renewal approach used to derive first passage
times and association rates in the diffusion-controlled limit; a
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discussion of a few effects going beyond this limit is con-
tained in Appendix A . The theoretical analysis of the dynam-
ics in the polymer-particle system makes use of a mean field
approach for the polymer dynamics and a heuristic approxi-
mation for interparticle hydrodynamics. The main results are
shown in Sec. II, while a brief review of the theory and
calculational details are postponed to the Appendixes B and
C. The Brownian dynamics �BD� simulation method used to
independently test the theoretical description is described in
Sec. III. The detailed validation of the theory through BD
simulation results is presented in Sec. IV. We then investigate
how the mechanical characteristics of the semiflexible
polymer—the contour and persistence lengths—affect the re-
action rate. Ultimately our theory yields quantitative predic-
tions that can be tested empirically. Section V summarizes
the main results and offers suggestions for future experi-
ments.

II. THEORY

A. Diffusion-controlled reaction rates

In general, association rates are calculated by finding the
steady-state solution of a diffusion equation with absorbing
boundary conditions.22,23 In our case, we can employ the
simpler renewal approach,24,25 which avoids the necessity of
imposing absorbing boundaries: first passage times and bind-
ing rates can be directly extracted from the solution of the
unbounded problem, i.e., the dynamic Green’s function de-
scribing the time evolution of the relative distance between
reactants subject to diffusive motion. The renewal approach
is in principle equivalent to the Wilemski–Fixman formal-
ism, and they share the same underlying approximations:26,27

�i� the Green’s function for the time evolution of the particle-
target distance is assumed to be that of a stationary Markov
process; �ii� excluded-volume between the reactants is ig-
nored. In the following, we briefly review the main aspects
of the approach.

For a stochastic process in one dimension, the Green’s
function g�x ,x0 ; t� specifies the probability to find the par-
ticle at x at time t given a starting point x0 at time t=0. If we
are interested in paths that reach a boundary point xa in time
t, the corresponding transition probability can be written as a
convolution,

g�xa,x0;t� = �
0

t

dt�f�t�;xa,x0�g�xa,xa;t − t�� , �1�

where f�t ;xa ,x0� is the first passage time distribution: the
probability of reaching xa in time t starting from x0 at t=0
without passing through xa along the way. A Laplace trans-
formation L acting on the time variable t leads to

g̃�xa,x0;s� = f̃�s;xa,x0�g̃�xa,xa;s�

⇔ f�t;xa,x0� = L−1� g̃�xa,x0;s�
g̃�xa,xa;s�

� , �2�

where Laplace transforms are denoted by L�f�t��= f̃�s�. Note
that g�x ,x0 ; t� is the Green’s function in the absence of ab-

sorbing boundary conditions; we assume only that the prob-
ability vanishes at x→ ��.

To investigate the role of polymer fluctuations and of
hydrodynamics on the reaction rates of diffusion controlled
reactions, we consider an idealized situation: the only param-
eter relevant for the binding process then is the radial dis-
tance r between the reactants, meaning that the problem is
effectively reduced to one dimension. Deviations from this
simple picture and their impact on the association rates are
discussed in Appendix A. In the case of perfect absorption,
particles bind when they collide for the first time—when the
relative distance r reaches the absorption radius ra. As a re-
sult, the binding rate ka�t� can be obtained from the first
passage time distribution by integrating over all possible ini-
tial separations

ka�t� = 4��
ra

�

dr0r0
2f�t;ra,r0� . �3�

The steady-state rate ka reached at long times is extracted

from the Laplace transform k̃a�s� using the final value theo-
rem

ka = lim
t→�

ka�t� = lim
s→0

sk̃a�s� . �4�

For the simple case of two kinds of uncoupled Brownian
particles with diffusion constants D1 and D2, the radial
Green’s function, which will explicitly be shown in Sec. II B
�Eqs. �10� and �11��, can be easily written down and the
result for the first passage time distribution in Laplace space
reads

f̃�s;ra,r0� =
ra

r0
exp�− �r0 − ra�	 s

D

 , �5�

with total diffusion constant D=D1+D2. Applying Eq. �3�,
which corresponds to imposing uniform initial concentra-
tions at time t=0, one obtains the association rate

ka�t� = 4�Dra�1 +
ra

	�Dt

 , �6�

which at long times reduces to the well-known Smolu-
chowski rate12 kS=4�Dra constituting the upper limit for
reaction rates governed by Brownian diffusion in three di-
mensions.

For the more complicated polymer-particle case, the re-
newal method works analogously, but the Laplace transforms
must be carried out numerically using standard numerical
techniques:28 the Laplace transformation of the numerator in
Eq. �2� is performed with the routine gsl_integration_qags
with upper integration boundary 50 /s, while the Laplace
transform of the denominator in Eq. �2� and the numerical
integration over initial separations r0 in Eq. �3� are obtained
using the routine gsl_integration_qagiu; a workspace of 105

intervals was allocated for all these routines and the relative
and absolute error bounds were set to 10−7. For the numerical
implementation of the final value theorem in Eq. �4� the val-
ues s�1–2�10−8�−1 ���6��a3 /kBT being the diffusional
time scale of a spherical particle of radius a in a solvent of
viscosity �� proved appropriate: within this range the nu-
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merical evaluation of the steady state Smoluchowski rate kS

coincided with the analytic result within a typical relative
accuracy of �10−5. Results of the renewal approach applied
to DNA-protein dynamics are presented in Sec. IV.

B. Dynamic Green’s functions

As outlined above, the knowledge of dynamic Green’s
functions specifying the probability that a radial distance r
between two objects is realized at time t after starting at a
radial distance r0 allows the calculation of association rates.
The first step toward the description of the polymer-particle
system consists in the analysis of the polymer motion itself:
The dynamics of semiflexible polymers including hydrody-
namics can be captured by a mean field theory �MFT� dis-
cussed in detail in Ref. 29, where the model was shown to
provide an accurate description of internal polymer kinetics,
validated through extensive comparisons with BD simula-
tions. Moreover, the theory can be independently tested by
comparison with recent fluorescence correlation spectros-
copy experiments:30 without any fitting parameters, it exhib-
its excellent agreement for the mean square displacement
�MSD� of tagged ends of single dsDNA fragments diffusing
in solution.31

Here we demonstrate that the mean field approach in
addition also exhibits excellent agreement for the dynamic
Green’s function characterizing the motion of specific points
on the polymer contour when comparing theory and BD re-
sults. A short overview of the theory and details concerning
the derivation can be found in Appendix B; the result of the
calculation involving a normal mode expansion is a Gaussian
Green’s function specifying the conditional probability that a
point on the polymer contour �specified by the arc-length
variable s� reaches spatial position r in time t given a start at
r0,

G�r,r0;t� = �2�V�t��−3/2exp�−
�r − r0�2

2V�t� 
 , �7�

V�t� = 2Dpolt + 2kBT

n=1

N
�n

	n
�1 − e−	nt�
n�s�2. �8�

In Eq. �8� Dpol denotes the center-of-mass diffusion constant
of the polymer coil and is given in Appendix B. The values
of the fluctuation dissipation parameters �n and of the in-
verse relaxation times 	n result from the �numerical� evalu-
ation of the hydrodynamic interaction tensor; the normal
modes 
n�s� with mode number n additionally depend on
polymer parameters, i.e., contour length L and persistence
length lp. The variance V�t� in Eq. �8� thus has contributions
of the center-of-mass motion of the entire polymer coil and
of internal fluctuations of the contour: on large time scales
t�	1

−1 the variance reduces to V�t��2Dpolt and hence the
motion is dominated by the Brownian diffusion of the poly-
mer’s center-of-mass, for smaller times, however, the contri-
bution from internal polymer modes becomes important. The
radial Green’s function Grad�r ; t� for a particle starting at r0

=0 is obtained by integrating G�r ,0 ; t� over the surface of a
sphere of radius r,

Grad�r;t� =
4�r2

�2�V�t��3/2exp�−
r2

2V�t�
 . �9�

In Sec. IV, we compare the time evolution of this transition
probability for the case of the end-monomer �s= �L /2� to
BD simulation results.

Hydrodynamic interactions influence the relative motion
of diffusing objects: these interactions are included in our
analytic approach by a heuristic approximation, which is mo-
tivated for the case of two spherical particles and for the case
of a single diffusing particle and a specific target site on a
polymer in Appendix C.

In general, the dynamic Green’s function takes the form
of a Gaussian centered at the initial separation r0; the inte-
gration over a sphere of radius r= �r� leads to the radial
Green’s function

Grad
� �r,r0;t� =

r

r0
	2�V��t�

�exp�−
�r − r0�2

2V��t� 

− exp�−

�r + r0�2

2V��t� 
� , �10�

where the superscript �=n,h discriminates between radial
Green’s functions without and with hydrodynamics. In total,
we distinguish four cases in our analysis: two spherical par-
ticles without hydrodynamics �i� and with hydrodynamics
�ii�, and a spherical particle and a specific target point on a
semiflexible polymer without hydrodynamics �iii� and with
hydrodynamics �iv�, for which the respective variances are as
follows:

�i� Vn�t� = 2�D1 + D2�t , �11�

�ii� Vh�t,r0� = 2�D1 + D2 − 2
̄�r0,t��t , �12�

�iii� Vn�t� = 2Dpart + 2Dpolt + 2kBT

n=1

N
�n

	n

��1 − e−	nt�
n�s�2, �13�

�iv� Vh�t,r0� = 2Dpart + 2Dpolt + 2kBT

n=1

N
�n

	n

��1 − e−	nt�
n�s�2 − 4
̄�r0,t�t , �14�

where D1 and D2 are the diffusion constants in the case of
relative diffusion of two spherical particles, Dpar is the diffu-
sion constant of the free particle in the case of the polymer-
particle reaction, Dpol is the polymer’s center-of-mass diffu-
sion constant, and the sums over the mode numbers n again
characterize the polymer’s contour fluctuations �compare Eq.
�8��. The slowing down of the relative motion due to hydro-
dynamics is reflected by the effective coupling parameter

̄�r0 , t�, which is motivated and shown in its full functional
form in Appendix C. The nonhydrodynamic and hydrody-
namic Green’s functions for the two systems we considered
are compared with BD results in Sec. IV.
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III. BROWNIAN DYNAMICS SIMULATIONS

To test the analytic results of Sec. II, we simulate a semi-
flexible polymer in solution adopting a standard BD
scheme,32 in which the polymer is modeled as a chain of M
beads of radius a. For the low Reynolds number regime, the
Langevin equation governing the time evolution of the posi-
tion ri of bead i is given by

dri�t�
dt

= �
j=1

M

�J ij · �−
�U�r1, . . . ,rM�

�r j
�

fj�t�

+ �i�t� . �15�

The long-range hydrodynamic interactions—the fact that a
force f j acting on bead j creates a flow-field affecting the
motion of bead i—are described by the Rotne–Prager mobil-
ity matrix �J ij �Ref. 33�

�J ij = �0�ij1J + �1 − �ij��J�rij� , �16�

�J�rij� =
1

8��rij
�1J +

rij � rij

rij
2 � +

a2

4��rij
3 �1J

3
−

rij � rij

rij
2 � ,

�17�

where rij =ri−r j, rij = �rij�, 1J is the 3�3 identity matrix, and
�0= �6��a�−1 is the Stokes self-mobility of a sphere of ra-
dius a in a solvent of viscosity �. The stochastic contribu-
tions �i�t� in Eq. �15� are assumed to be Gaussian random
vectors, which are hydrodynamically correlated according to
the fluctuation-dissipation theorem

��i�t� � � j�t��� = 2kBT�J ij��t − t�� . �18�

The interbead potential U=UWLC+ULJ determining the
configuration-dependent forces, where

UWLC =
�

4a


i=1

M−1

�ri+1,i − 2a�2 +
�

2a


i=2

M−1

�1 − cos �i� ,

�19�

ULJ = w

i�j

��2a − rij���2a

rij

12

− 2�2a

rij

6

+ 1� ,

consists of a shifted harmonic potential between adjacent
beads of strength �=200kBT /a, a bending potential of
strength �= lpkBT between adjacent bonds, and a pairwise
truncated Lennard-Jones potential ULJ of strength w=3kBT.
Here �i is the angle between the bond vectors ri,i−1 and ri+1,i.
The first term in the wormlike chain potential UWLC keeps
the contour length L approximately fixed, while the second
one with modulus � takes care of the bending stiffness of the
chain. The repulsive Lennard-Jones potential ULJ prevents
significant bead overlap, which is a source of numerical in-
stabilities. In Sec. IV, where we model the motion of a free
particle �i.e., a protein or free monomer� relative to the poly-
mer chain, the particle is represented by an additional bead,
not connected to the polymer chain, and subject only to hy-
drodynamic interactions between the particle and the chain.
We do not account for steric interactions between particle
and polymer in order to simplify the comparison with the
theoretical results where such effects cannot be properly in-

cluded. A short discussion of excluded-volume effects is
given in Appendix A. To avoid numerical instabilities in situ-
ations where the free particle overlaps with the polymer, in
this case we use the Rotne–Prager–Yamakawa tensor,34

which modifies Eq. �17� for overlapping beads to

�J�rij� = �0��1 −
9rij

32a

1J +

3rij

32a

rij � rij

rij
2 � if rij � 2a .

�20�

Equation �15� is discretized and integrated numerically
using the Euler algorithm. The correlated stochastic contri-
butions of Eq. �18� are obtained from uncorrelated Gaussian
noise by means of a Cholesky decomposition of the hydro-
dynamic matrix �J ij. In all the results below, lengths are mea-
sured in units of a, energies in units of kBT and time in units
of �=a2 / �kBT�0�. The time step is �t=3�10−4� and a typi-
cal simulation lasts 109 steps, after an initial thermalization
period of 106–107 steps. To reduce computational costs the
Cholesky decomposition is only performed every 5 time
steps. For a given chain length L=2a�M −1� and persistence
length lp, the quantities of interest are averaged over 25–
2500 different trajectories until the convergence is satisfac-
tory.

IV. RESULTS

In order to validate the various analytical approaches
described in Sec. II, we test them against BD simulations.
Since the binding rates depend sensitively on having good
estimates for the Green’s functions, we will focus on show-
ing that the MFT approximation for the transition probabili-
ties can reproduce the crucial physical effects: �i� the influ-
ence of internal polymer modes on the diffusion of the target
site; �ii� the slow-down of relative motion between the free
particle and target due to hydrodynamics. For simplicity, we
concentrate in our analysis on one particular target site, the
end-monomer of the chain. This has special relevance in bio-
logical processes, for example in the case of polymerization.
Nevertheless, our theoretical approach is equally applicable
to other target positions along the polymer contour: the re-
sults are similar though changes in the association rates are
clearly less drastic because of the reduced mobility of target
sites in the middle of the chain compared with the one at the
chain’s end.

A. Polymer motion

We begin by considering just the internal relaxation of a
polymer of total contour length L: the radial Green’s function
of Eqs. �8� and �9� describing the diffusive motion of the
polymer end-point �s= �L /2�. In Fig. 1, we compare this
analytical MFT expression for Grad�r , t� to histograms ex-
tracted from simulations of a chain with L=100a, lp=20a.
The histograms are based on the analysis of 25 independent
trajectories, each with 108 steps. The time evolution of the
probability distribution is in excellent agreement with
Grad�r , t� �Eqs. �8� and �9�� over time scales spanning four
orders of magnitude. Note that the largest time scale consid-
ered �t=300�� is less than the largest relaxation time of the
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polymer, 	1
−1�2�103�, meaning that internal fluctuations

dominate the polymer motion throughout this entire time
range; the time evolution is illustrated more directly in the
movie linked in Fig. 2 showing the remarkable agreement,
even in the tails of the distribution �which are visible on the
logarithmic scale spanning seven decades of magnitude�.
Our comparison here is more detailed than in the earlier
MFT study of Ref. 29, since we consider the full transition
probability and not just the end-point MSD. However, the
conclusion is the same: the MFT provides a highly accurate
picture of internal polymer dynamics.

B. Relative motion of two spherical particles including
hydrodynamics

Since the heuristic estimate for the hydrodynamic
Green’s function Grad

h �r ,r0 ; t� of two freely diffusing particles
�Eqs. �10� and �12�� is the basis of our approach to polymer-
particle interactions, we need to check that this estimate is
reasonable. For this purpose, we performed hydrodynamic
BD simulations of two single spheres of radius a and ex-
tracted histograms from the variation of the interbead dis-
tance over time. In total 2400 independent trajectories were
calculated, each starting at a distance rinit=3a and lasting 107

time steps. For given separations r0 and r, relevant transition
events were identified, i.e., parts of the trajectories starting at
a certain distance r0��r /2 and ending at r��r /2, where �r
is the histogram binwidth. These were used to estimate the
probability distribution corresponding to Grad

h �r ,r0 ; t�. In Fig.
3, we show the BD simulation results for r0=3a and various
t together with Grad

h �Eqs. �10� and �12�� and the hydrody-
namically decoupled Green’s function Grad

n �Eqs. �10� and
�11��. Analogous results for an initial separation r0=5a are
shown in Fig. 4. The inhibition of relative motion due to
hydrodynamics is clearly evident at short times: the distribu-
tions from the simulations are more narrowly peaked than
the decoupled results, which spread out noticeably faster.
The slowing down is correctly reproduced in the Grad

h curves,
though it is slightly underestimated when compared with the
simulation data. Despite the simplicity of the underlying ap-
proximation, Grad

h still captures the essential features of the
interaction. For longer times, when the interparticle distance
has become large and hydrodynamics plays a smaller role,
Grad

h converges to Grad
n , and both agree with the BD results.
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FIG. 1. The probability Grad�r , t� that the end-point of a polymer with length
L=100a and persistence length lp=20a will diffuse a distance r in time t.
The MFT predictions �Eqs. �8� and �9�, lines� are compared with the results
from hydrodynamic BD simulations �black dots� for different times t mea-
sured in units of �=a2 / �kBT�0�.

FIG. 2. The movie shows the motion of polymer end-points �red dots�
superimposed from an ensemble of simulation trajectories, each starting at
the origin �purple dot�. The inset shows the evolving radial probability
P�r , t�=Grad�r ; t� /r2 taken from the simulation histograms �red markers�
compared with the analytic MFT results of Eqs. �8� and �9� �blue curve�.
�Enhanced online.� �URL: http://dx.doi.org/10.1063/1.3352571.1�
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FIG. 3. The probability Grad
� �r ,r0 ; t� that two spherical particles of radius a

end up at separation r after time t given an initial separation r0=3a. For each
time t, BD simulation data including hydrodynamics �black dots� are com-
pared with two theoretical results: the nonhydrodynamic Green’s function
for decoupled particles labeled by �=n �Eqs. �10� and �11�� and the approxi-
mate hydrodynamic Green’s function labeled by �=h �Eqs. �10� and �12��.
Times are measured in units of �=a2 / �kBT�0�.
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C. Relative motion of a polymer and a spherical
particle including hydrodynamics

The final test for our Green’s function approach concerns
the approximate description of polymer-particle relative mo-
tion, contained in Eqs. �10� and �14�. To extract the corre-
sponding transition probabilities from BD simulations, we
take a polymer with L=100a, lp=20a, allow it to thermalize,
and then add a single free particle of radius a that has no
excluded volume, but is hydrodynamically coupled to the
polymer beads. The particle is positioned at an initial dis-
tance rinit=3a from one of the polymer ends, and data is
collected over 107 time steps. This procedure is repeated to
obtain 2500 independent trajectories. As before, relevant
transition events are used to determine the probability distri-
bution for diffusing from a separation r0 to r in time t. The
results, plotted in Fig. 5 for r0=3a and in Fig. 6 for r0=5a,
are qualitatively similar to the case of two particles: com-
pared with the nonhydrodynamic case we see a reduced rela-
tive mobility between the target site and the particle for small
separations. The hydrodynamic Green’s function is quite
close to the simulation results, again slightly underestimating
the strength of the coupling. However, given the complexity
of the correlations between the particle and the entire poly-
mer coil, it is notable that we are able to get good quantita-
tive agreement. Since the association rates are derived di-
rectly from this Green’s function, we conclude that we
should be able to obtain realistic estimates for the reaction
process.

D. Association rates

The diffusion-limited reaction we consider is schemati-
cally illustrated in Fig. 7: free particles are absorbed by the
reactive end-monomer of a chain as soon as the separation r
reaches the absorption radius ra=rpar+a. The association rate
is calculated from the renewal approach in Sec. II, with the

only input being the radial Green’s functions for the relative
motion of the particle and the chain end �Eqs. �10� and �14��.

Since polymer fluctuations and the polymer-particle hy-
drodynamic coupling have competing effects on the associa-
tion rate, it will be instructive to start with the simple case
where the hydrodynamic coupling has been turned off, i.e.,
we use the nonhydrodynamic Green’s function Grad

n of Eqs.
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FIG. 4. Same as in Fig. 3, but with initial separation r0=5a between the
beads.
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FIG. 5. The probability Grad
� �r ,r0 ; t� that the end-monomer of a polymer

with L=100a, lp=20a, and a spherical particle of radius a end up at sepa-
ration r after time t given an initial separation r0=3a. For each time t, BD
simulation data including hydrodynamics �black dots� are compared with
two theoretical results: the nonhydrodynamic Green’s function labeled by
�=n �Eqs. �10� and �13��, and the approximate hydrodynamic Green’s func-
tion labeled by �=h �Eqs. �10� and �14��. Times are measured in units of
�=a2 / �kBT�0�.
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end-monomer and the free particle.
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�10� and �13�. The resulting association rate as a function of
particle radius rpar for a polymer with L=1000a, lp=50a is
marked by red dots in Fig. 8. �For DNA, where a�1 nm
and lp�50 nm, this would correspond to a strand of length
1 �m.� The Smoluchowski rate,

kS = 4��Dpol + Dpar�ra, �21�

which involves only the center-of-mass motion of the poly-
mer coil and particle, is shown as a line with the polymer
diffusion constant Dpol taken from the MFT expansion in
Appendix B. The corresponding numerical results of the re-
newal approach shown as green triangles are based on Eqs.
�10� and �11� and again use Dpol from Appendix B. The
Smoluchowski value is the standard point of reference when
considering DNA-protein interaction.35 Clearly, internal
polymer fluctuations have a significant impact, enhancing the
association rates by 50%–135% relative to kS over the range
rpar=0.5a–6a; the minimum at rpar�2a for the rates with
internal polymer motion indicates that the effect of larger
absorption radius ra=rpar+a with increasing rpar quickly

dominates the one of decreasing diffusion constant Dpar

�rpar
−1 .

In the absence of hydrodynamics, we can use an earlier
result of Berg21 to do a consistency check on the renewal
approach derivation of the association rates. For the case of a
Gaussian Green’s function, and assuming a Gaussian sink
profile S�r�=exp�−3r2 /2ra

2� instead of a perfectly absorbing
boundary at ra, Berg derived an expression for the associa-
tion rate in terms of the relative nonhydrodynamic variance
Vn�t�

ka
Berg = �2��3/2��

0

�

dt�Vn�t� + 2/3ra
2�−3/2�−1

. �22�

Plugging Vn�t� from Eq. �13� into Eq. �22�, we recover the
nonhydrodynamic rates shown in Fig. 8 within a difference
of 5% �comparison not shown�.

When hydrodynamic interactions are included together
with internal polymer motion �Grad

h of Eqs. �10� and �14� is
used instead of Grad

n of Eqs. �10� and �13��, the association
rates are smaller than in the nonhydrodynamic case, as seen
in the data marked by blue crosses in Fig. 8. This is due to
the inhibited mobility between the particle and the target at
short distances. However the rate decrease is only
�15%–20%, so the overall association rate is still 30%–
100% larger than the Smoluchowski result for the range of
particle sizes considered. The magnitude of the rate decrease
is comparable to previous estimates derived for the simpler
problem of a reaction between two spherical particles: Fried-
man obtained a 15% reduction due to hydrodynamics,36

Deutch and Felderhof saw a 46% drop-off,37 and Wolynes
and Deutch predicted a decrease by 29%.38

Since the conformational fluctuations depend on the me-
chanical properties of the chain, it is natural that the associa-
tion rates will vary with the parameters L and lp that charac-
terize the semiflexible polymer. In Fig. 9, we show contour
diagrams of the association rate in terms of L /a and lp /a for
two different particle radii: rpar=a in the top panel, as would
be the case in a polymerization process, and rpar=4a in the
bottom panel, which corresponds to an average protein size
for the case of DNA-protein interaction �with a=1 nm�. Fig-
ure 10 depicts the same data, but in terms of percent rate
increase over the Smoluchowski result kS of Eq. �21�. Inter-
estingly, while the absolute rate in Fig. 9 is almost indepen-
dent of L for L� lp, it does show a slight maximum for lp

�20a when rpar=a and lp�30a when rpar=4a. This behav-
ior as a function of lp is an intrinsic property of the polymer,
because it appears also in the absence of hydrodynamic cou-
pling �data not shown�. This means that there is an optimal
persistence length lp at which the chain reactivity is maxi-
mized, and interestingly this optimum is not far from the
actual DNA persistence length of lp=50 nm. The maximum
is more prominent in the relative rates of Fig. 10, where the
increase compared with kS rises sharply to �30% �rpar=a�
and �100%�rpar=4a� for long polymers with lp=20a–60a
including double-stranded DNA �lp�50a�.

FIG. 7. Schematic view of a bead-spring polymer with a reactive end and a
free particle of radius rpar. The particle is absorbed as soon as the separation
r reaches the absorption radius ra=rpar+a.
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FIG. 8. Three estimates for the association rate of a free particle to the
end-point of a polymer with L=1000a, lp=50a, as a function of particle
radius rpar. For DNA, where a�1 nm and lp�50 nm, the corresponding
strand would have a length L=1 �m. The rates are measured in units of
kBT /6��, or �1.3�108 M−1 s−1 for water at room temperature. Green tri-
angles and solid line are the Smoluchowski rate considering only the center-
of-mass diffusion of the particle and the polymer coil, without hydrody-
namic coupling �green triangles are based on Eqs. �10� and �11�, the line
denotes Eq. �21��. Red dots: the rates including the internal fluctuations of
the polymer, without hydrodynamics �Eqs. �10� and �13��. Blue crosses: the
total rates including both fluctuations and hydrodynamics �Eqs. �10� and
�14��. All the data marked by symbols is obtained from the numerical evalu-
ation of the renewal approach �Eqs. �2�–�4��.

135103-7 DNA-protein binding rates J. Chem. Phys. 132, 135103 �2010�

Downloaded 07 Apr 2010 to 128.8.92.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



V. DISCUSSION AND SUMMARY

In this paper, we have studied the association of free
particles and a target site on a semiflexible polymer—a class
of diffusion-limited reactions of wide biological relevance,
whether in polymerization of biomolecules or gene regula-
tion by DNA-binding proteins. We focused on two compet-
ing effects that are, with the lone exception of the segmental
diffusion considered in Ref. 21, entirely neglected in existing
theories for these processes: the bending fluctuations of the
polymer in equilibrium, which enhance the association rate,
and the hydrodynamics between the polymer and particle,
which reduces it. Quantifying the fluctuations required an
accurate description of internal polymer motion, available
through the MFT of semiflexible polymer dynamics. For the
hydrodynamics, we developed a simple heuristic estimate to
model the decrease in mobility when two diffusing objects
approach each other. The end result of the competition sen-
sitively depends on the mechanical properties of the polymer
and the size of the reactive particle: we see a maximal in-
crease over the Smoluchowski rate for persistence lengths
lp=20a–60a; this increase is �30% for the case of small
particles, and �100% for particle sizes typical of regulatory
proteins. As a function of particle size, the reaction rate dis-

plays a minimum at a particle radius equal to the polymer
diameter; for larger proteins the probability of hitting the
DNA increases.

Although based on experimental evidence it is generally
assumed that the binding of proteins to DNA is a diffusion-
limited process2 �and references therein�, recent studies in
the slightly different context of protein assisted interior loop
formation of DNA39,40 indicate that this assumption is prob-
ably not justified for all kinds of DNA-protein systems.
Within our approach we have neglected the possibility of
encounters between the protein and the target site on the
DNA that do not immediately lead to a reaction, for example
due to orientational constraints. This is clearly an oversim-
plification, which however can be approximately rectified by
a reaction factor � �see Appendix A�.

Directly testing our theoretical predictions may be pos-
sible with existing experimental techniques. In particular,
one can study the role of polymer fluctuations on association
rates by comparing two different setups involving bimolecu-
lar diffusion-limited reactions, shown schematically in Fig.
11. In scenario I both reactants are free in solution, while in
scenario II one of the reactants is bound to the end of a
semiflexible polymer. The corresponding rates ka

I and ka
II

could be measured through simple kinetic experiments or

FIG. 9. The association rate ka �Eqs. �2�–�4� with Eqs. �10� and �14�� be-
tween a free particle and a polymer end as it varies with the polymer contour
length L and persistence length lp for particle radius rpar=a �top panel� and
for rpar=4a �bottom panel�. The rates include the effects of polymer fluc-
tuations and hydrodynamic coupling, and are measured in units of
kBT /6��, or �1.3�108 M−1 s−1 in water at room temperature.

FIG. 10. Same as in Fig. 9, but showing the percent rate increase over the
Smoluchowski result, kS �Eq. �21��, instead of the absolute rate.
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using fluorescence microscopy. In the latter case, the reac-
tants would be fluorophores and quencher molecules, and the
rate of the diffusion-limited quenching reaction can be ex-
tracted from the decay of the total fluorescence signal over
time. As shown in Table I, our theory predicts a ratio ka

II /ka
I

�0.77 for the two scenarios using rpar=a and a 1 �m
strand of DNA. This is clearly distinguishable from the
Smoluchowski prediction, ka

II /ka
I =0.5, which ignores hydro-

dynamics and internal fluctuations.
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APPENDIX A: ADDITIONAL EFFECTS ON THE
ASSOCIATION RATES

Throughout this paper we have considered an idealized
picture of the association process assuming that a reaction
takes place as soon as the radial distance r reaches the ab-
sorption radius ra. A more realistic description should take
into account a number of other factors: �i� molecules are in
general not equally reactive on their entire surface, i.e., bind-
ing also depends on the relative orientation of the reactants;
�ii� the correct relative orientation alone might not directly
lead to binding due to additional requirements, e.g., confor-
mational changes of the molecules. In addition we have as-
sumed that the polymer-particle dynamics is purely diffusive;
deviations from this behavior might be caused by �iii�
excluded-volume effects between the particle and nontarget
monomers of the polymer together with �iv� electrostatic in-
teractions between the particle and polymer. Due to all these
effects, the real rate ka

real=�ka will differ from our predicted

rate ka by a factor �. Below we give a rough estimate of �
for each of these cases and argue that, though modifying the
absolute values of the association rates, these considerations
do not alter the main qualitative conclusions of our work.

�i� Rate-influencing effects of orientational constraints
have been examined for the case of diffusion-
controlled bimolecular reactions of spherical
particles;41,42 the general ideas can also be applied to
our polymer-particle system. If only a fraction p of
the target’s surface is reactive, the most important re-
sult is that the association rate is not simply reduced
by p. Rather the factor �� p reflects the fact that a
first encounter between the reactants involving inert
parts of the target’s surface �occurring with probabil-
ity 1− p� does not exclude the possibility of a success-
ful reaction at a later time. In the limit where the
process of mutual reorientation is fast compared with
the time scale of relative diffusion, one even recovers
�=1: the partial surface reactivity is then completely
compensated for by fast orientational changes of the
target. End-tangent fluctuations of semiflexible poly-
mers are typically fast—the relaxation times of the
high frequency normal modes are on the order of
�a2 / ��0kBT��4 ns. Plugging this time scale into
the method of Ref. 42, one can extract representative
values for �: when p=0.5 we find ��0.79 for rpar

=a and ��0.91 for rpar=5a.
�ii� For the case where the reaction is limited by the con-

formational state of the particle, the time scale of con-
formational transitions is typically much larger than
the time scale of relative diffusion between the par-
ticle and the target. Where such a separation of time
scales exists, the rate reduction factor � is approxi-
mately just the probability for the particle to be in the
correct conformation.

�iii� Throughout this paper excluded-volume effects be-
tween polymer and particle have been neglected. The
diffusion toward the target is altered by the presence
of the polymer coil; however, since the effective seg-
ment density is low for a semiflexible polymer in
good solvent, we only expect minor corrections. On
the other hand, as can be seen from Fig. 7, neighbor-
ing monomers to the target monomer exclude a solid
angle �ex from the target’s surface. In the case of the
end-monomer being the target, the excluded solid
angle is simply

�ex = �
0

2�

d��
0

�max

d� sin � = 2�
rpar

rpar + a
, �A1�

with �max=arccos�rpar / �rpar+a��. The surface of the
target-monomer over which a reaction can take place
is therefore reduced by a factor p=1−�ex /4� ranging
from 1 in the limit rpar→0 to 1/2 in the limit rpar

→�. At first glance the situation may appear similar
to case �i�, where a fraction 1− p of the target surface
is inert. However here the 1− p fraction is inaccessible
due to excluded volume; since the particle cannot get
near to that portion of the target, the rate reduction

FIG. 11. Schematic representation of two scenarios for a bimolecular reac-
tion: �I� both species are free in solution; �II� one of the species is attached
to the end of a semiflexible polymer. The comparison of the diffusion-
limited association rates ka

I and ka
II should highlight the role of internal poly-

mer motion in such reactions.

TABLE I. Estimates for diffusion-controlled bimolecular association rates
in the experimental scenarios shown in Fig. 11. The polymer is assumed to
be a 1 �m strand of dsDNA and the particle radius rpar=1 nm. The rates ka

are given in units of kBT /6�� or �1.3�108 M−1 s−1 in water at room
temperature.

Rate estimates including ka
I ka

II ka
II /ka

I

Center-of-mass motion 50.27 25.14 0.5
Plus internal polymer motion ¯ 39.83 ¯

Plus hydrodynamics 42.52 32.71 0.77
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will be less drastic �for a given p, the corresponding �
value will be closer to 1�.

�iv� For electrostatic effects, which play a role, for ex-
ample, in the nonspecific interactions between pro-
teins and DNA, the value of � is difficult to estimate
analytically. An effective method for determining �
using BD simulations has been proposed in Ref. 43;
the authors of that study considered attractive electro-
statics between oppositely charged monovalent ions
in water. For an unscreened Coulomb potential �
=6.82 and 7.31, respectively, with and without hydro-
dynamic interactions on the level of the Oseen tensor.
The corresponding values for a Debye length of 1 nm
were �=4.40 and 4.80.

The total value of � seen in an experimental situation is
expected to reflect some combination of the above effects.
While this will modify the absolute association rates, the
relative rate changes discussed in our work should remain
valid: in all scenarios, when we compare to a fixed target in
the free-draining limit, the inclusion of hydrodynamics
should retard the reaction, but should be more than compen-
sated for by the speed-up due to internal polymer fluctua-
tions.

APPENDIX B: MEAN FIELD THEORY FOR
SEMIFLEXIBLE POLYMER DYNAMICS

The simplest description of a semiflexible polymer is the
wormlike chain model: the polymer is represented by a con-
tinuous, differentiable space curve r�s� of contour length L,
where the arc-length variable s ranges from −L /2 to L /2.
The associated elastic energy UWLC, the continuum analog of
Eq. �19�, is given by44

UWLC�r�s�� =
�

2
�

−L/2

L/2

ds� �u�s�
�s


2

. �B1�

The bending rigidity is �= lpkBT, and the tangent vector u
=�r /�s is constrained by local inextensibility to unit length,
u2�s�=1 at each s. Since this constraint leads to nonlinear
equations of motion, an alternative, approximate model is
required. Within the MFT approach45,46 the local constraint is
relaxed and replaced by the global and end-point conditions
��dsu2�s��=L and �u2��L /2��=1. The result is a Gaussian
mean field Hamiltonian which incorporates a finite extensi-
bility in addition to the bending term

UMF�r�s�� =
�

2
�

−L/2

L/2

ds� �u�s�
�s


2

+ ��
−L/2

L/2

dsu2�s�

+ �0�u2�L/2� + u2�− L/2�� , �B2�

where �=3lpkBT /2, �=3kBT / �4lp�, and �0=3kBT /4. In this
form the Gaussian model exactly reproduces various lowest-
order equilibrium averages of the wormlike chain, most im-
portantly the tangent-tangent correlation function, and other
derived quantities such as the mean square end-to-end dis-
tance.

The dynamic theory for the Gaussian semiflexible poly-
mer is based on the hydrodynamic preaveraging approach of

Ref. 47, analogous to that used for the Zimm model48 in the
case of flexible chains. The time evolution of a point s on the
polymer contour is governed by the Langevin equation

�

�s
r�s,t� = − �

−L/2

L/2

ds��J av�s,s��
�UMF

�r�s�,t�
+ ��s,t� ,

�B3�
���s,t� � ��s�,t��� = 2kBT�J av�s,s����t − t�� .

Here we use the preaveraged mobility tensor �J av�s ,s��,
which is obtained from the standard Rotne–Prager tensor by
averaging over all equilibrium configurations of the polymer.
As seen in Eq. �17�, the original Rotne–Prager mobility in-
volves a dependence on the spatial distance between polymer
points, and hence on the specific configuration of the chain.
This would lead to nonlinear equations of motion, a problem
which is resolved in the preaveraging approximation, where
the mobility depends only on the arc-length coordinates s
and s�. For the mean field model of Eq. �B1� the preaveraged
mobility has the form47

�J av�s,s�� = �2a�0��s − s�� +
���s − s�� − 2a�

�	6�3���s − s���

�exp�−
6a2

���s − s���

�1J, �B4�

where ��l�=2lpl−2lp
2�1−exp�−l / lp��. The microscopic length

scale a in the continuum theory corresponds to the monomer
radius in the discrete BD simulations, and the unit step func-
tion � in Eq. �B4� serves as a short-distance cutoff for the
hydrodynamic interactions.

The preaveraged Langevin equation can be solved
through a normal mode decomposition, with the eigenmodes
fulfilling free-end boundary conditions at s= �L /2. This re-
duces Eq. �B3� to a set of ordinary differential equations
coupled by a hydrodynamic interaction matrix; the diagonal-
ization of this matrix yields simple Langevin equations for
the decoupled normal mode amplitudes Pn�t� �with stochastic
contributions Qn�t��

�

�t
P0�t� = Q0�t�,

�

�t
Pn�t� = − 	nPn�t� + Qn�t�,

n = 1, . . . ,N , �B5�

�Qni�t�Qmj�t��� = 2kBT�ij��t − t���n�nm.

The vectors Pn�t� and Qn�t� are related to r�s , t� and the
stochastic velocities ��s , t� through the expansions r�s , t�
=
n=0

N Pn�t�
n�s� and ��s , t�=
n=0
N Qn�t�
n�s�, where the sca-

lar functions 
n�s� are the decoupled normal modes. The
modes are ordered in such a way that the eigenvalues 	n

�inverse relaxation times� increase with n. Following Ref. 29,
we set the high-frequency cutoff N for the mode number to
N= �L /8a�, which was shown to give good agreement at short
times with BD simulations. At longer times, where the poly-
mer fluctuations are at length scales much larger than the
monomer radius a, the dynamics does not depend on the
precise choice of the cutoff. 	n and the fluctuation-
dissipation parameters �n can be directly derived from the
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tensor �J av evaluated numerically in the normal mode basis.
Full details of this procedure, together with the explicit form
of the normal modes 
n�s�, are given in Ref. 29.

Equation �B5� for a given mode n can be mapped onto
the well-known problem of a particle diffusing with friction
constant � in a harmonic potential of strength k centered at
x=0.49 We identify the mode amplitude Pn�t� with the posi-
tion x of the particle and set 	n=k /�, �n=1 /�. This allows
us to calculate the explicit form of the Green’s function for
the diffusive process, in other words the transition probabil-
ity P�Pn�t� ,Pn�0� ; t� for observing the amplitude Pn�t� after
time t, starting from the initial amplitude Pn�0�

P�Pn�t�,Pn�0�;t� = �2��n
2�t��−3/2exp�−

�Pn�t� − Mn�t��2

2�n
2�t� 
 .

�B6�

The probability has the form of a spreading Gaussian, with
time-dependent mean Mn�t� and variance �n

2�t� given by

M0�t� = P0�0�, Mn�t� = Pn�0�e−	nt, ∀ n � 0, �B7�

�0
2�t� = 2LDpolt, �n

2�t� = kBT�n	n
−1�1 − e−2	nt�, ∀ n � 0.

�B8�

Here

Dpol � kBT�0
0�s�2 = kBT�0
1

L
, �B9�

denotes the center-of-mass diffusion constant of the polymer
coil. Modes with different mode number n evolve indepen-
dently of each other. Transition probabilities between differ-
ent polymer configurations, each of them corresponding to a
certain �unique� set of normal mode amplitudes �Pn�t��, are
therefore expressed as the product of the transition probabili-
ties for the individual modes. As we are interested in the
motion of a single point s on the polymer contour, the inte-
grations over initial configurations with r�s ,0�=r0 and final
configurations with r�s , t�=r can be readily performed yield-
ing the Green’s function in Eqs. �7� and �8�.

APPENDIX C: HYDRODYNAMIC INTERACTIONS

In Appendix B, we were able to describe the long-range
hydrodynamic interactions between various points on a poly-
mer coil, and their influence on the internal relaxation of the
chain. A key simplifying feature in this analysis is the fact
that the spatial relationship between any two points on the
contour is constrained: their hydrodynamic interactions as
the polymer fluctuates in equilibrium can be taken into ac-
count through the preaveraging approximation. For the case
of a free particle and a target site on the polymer coil, esti-
mating hydrodynamic interactions is more difficult: the par-
ticle can drift away, and the strength of the interaction will be
highly dependent on the initial conditions and the elapsed
time. To understand the role of hydrodynamics in this situa-
tion, we first consider the simpler case of two freely diffus-
ing spherical particles, before tackling the full problem of

polymer-particle hydrodynamics. Though it may seem
trivial, even the two particle case presents a challenging
problem.36,37

1. Case of two spherical particles

We consider two noninteracting particles at positions
ri�t�, i=1,2, described by the Langevin equations

�

�t
ri�t� = �i�t� ,

�C1�
��i�t� � � j�t��� = 2kBT��t − t����ij�i1J + �1 − �ij��J�r12�� ,

where �i is the self-mobility of particle i, and hydrodynam-
ics are expressed through the Rotne–Prager tensor �J�r12�,
defined in Eq. �17�, dependent on the interparticle separation
r12. Hydrodynamic interactions are long-ranged ��r12

−1� and
therefore negligible only at distances much larger than the
sum of the particle radii, r12�a1+a2. For small separations,
the stochastic motion of the particles is highly correlated,
leading to a decrease in their relative mobility. To get a re-
alistic estimate of binding rates, where particles clearly have
to approach each other, it is therefore necessary to take these
hydrodynamic effects into consideration.

The main quantity of interest is the radial Green’s func-
tion for the relative motion of the particles, the probability
that two particles starting from a distance r0= �r12�0�� reach a
distance r= �r12�t�� in time t. For comparison, we will con-
sider the situation both with and without hydrodynamic in-
teractions, labeling the respective Green’s function Grad

h and
Grad

n . The second case, where the particles are totally decou-
pled and only the self-mobilities enter into the stochastic
correlations of Eq. �C1�, is trivial and leads to the functional
form of Eq. �10� with the variance of Eq. �11�, where Di

=�ikBT is the diffusion constant of particle i. Note that the
variance Vn�t� is just 1/3 of the MSD ��r12�t�−r12�0��2�.

In contrast, for the hydrodynamic case one cannot derive
an analytical form for Grad

h . Thus we will have to resort to a
heuristic approximation: we assume Grad

h has the same func-
tional form as Eq. �10�, but with a different variance Vh�t�,
reflecting the slower relative motion of the particles. Since
this variance is related to the MSD of r12�t�, we begin by
evaluating this MSD. From Eq. �C1� and the definition of the
Rotne–Prager tensor, Eq. �17�, one can obtain the following
exact relationship:

��r12�t� − r12�0��2�

= 6�D1 + D2�t − 12kBT��
0

t

dt�
1

6��r12�t��
� .

��t �C2�

The second term on the right can be rewritten as −12
t,
defining a time-dependent coupling parameter 
, which
quantifies the slow-down in relative diffusion compared with
the nonhydrodynamic case. This parameter involves both a
time and ensemble average over the trajectory r12�t�, and
hence is also dependent on the initial separation r0. Our heu-
ristic approach approximates 
 by an effective coupling
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function 
̄�r0 , t�, where the time and ensemble averages have
been replaced by a single ensemble average involving the
Green’s function Grad

n for the nonhydrodynamic system


̄�r0,t� =
kBT

6��
�

ra

�

dr
1

r
Grad

n �r,r0;t�

=
kBT

6��

1

2r0
�erf� r0 − ra

	2Vn�t�

 + erf� r0 + ra

	2Vn�t�
� .

�C3�

As in the preaveraging approximation in Appendix B, hydro-
dynamic interactions are cut off below the distance ra=a1

+a2, where the particles overlap. This effective parameter
shows the correct limiting behavior: 
̄�r0 , t��r0

−1 for short
times, where particles are close to their initial separation, and

̄�r0 , t�� ��D1+D2�t�−1/2 for long times where the particles
have drifted far away from each other. In analogy to the
nonhydrodynamic case, we define the variance Vh�t� as 1/3
of the MSD, using the effective parameter 
̄�r0 , t� instead of

. Thus the final form for our approximate hydrodynamic
Green’s function is reflected in Eqs. �10� and �12�. The role
of the effective coupling parameter 
̄ is to reduce the relative
mobility of the particles when they are near to each other and
thus subject to strong hydrodynamic interactions; in the
long-time limit the hydrodynamic effects become negligible
as the particles move to large separations.

In principle, the procedure outlined above to estimate 

can be iterated to produce higher-order approximations: in
deriving 
̄�r0 , t� one can use the hydrodynamic Green’s func-
tion Grad

h of Eqs. �10� and �12� instead of Grad
n . This would

lead to a better approximation for 
, and hence a more ac-
curate Green’s function which could be input into the next
level of the approximation. This iterative method converges
quickly, so for simplicity we restrict ourselves to the first
order results.

2. Case of a DNA-target site and a free particle

This approach for two freely diffusing particles can be
generalized to the problem of a free particle and a polymer.
The nonhydrodynamic case is again simple, with the relative
motion of the particle and a point s on the chain described by
a radial Green’s function which has exactly the same form as
Eq. �10�. The only difference is the variance Vn�t�, which
now includes the contribution of the polymer’s internal
modes as shown in Eq. �13�. Here Dpar=kBT /6��rpar is the
diffusion constant of the free particle, and rpar is the particle
radius.

For the hydrodynamic case, we can divide the compli-
cated interactions between the particle and the chain into
three parts: �i� the influence of the local region of radius a
around the target site s on the free particle; �ii� the influence
of the rest of the chain on the particle; and �iii� the back
influence of the particle on the entire polymer. For the spe-
cific problem we consider—association rates to a given tar-
get site—hydrodynamics plays a significant role only in the
close vicinity of the target. Hence contribution �i� will domi-
nate. The back influence in �iii� should be negligible for free
particles comparable in size to the monomers in the chain,

rpar�O�a�, since the motion of the polymer is mainly gov-
erned by relaxation of the internal modes. The relative un-
importance of �ii� is more subtle: one can take it into account
in a more elaborate numerical evaluation of the preaveraged
MFT Langevin equations, but comparison with the simpler
approximation discussed below does not show significant
improvement with respect to BD simulations �which include
all three contributions�. Thus we can construct a simple es-
timate for the hydrodynamic Green’s function by focusing on
contribution �i�. Grad

h has the same form as the two-particle
case, Eq. �10�, but with a variance given by Eq. �14� with


̄�r0,t� =
kBT

6��

1

2r0
�erf� r0 − ra

	2Vn�t�

 + erf� r0 + ra

	2Vn�t�
� ,

�C4�

in analogy to Eq. �12�. Here Vn�t� is the nonhydrodynamic
polymer-particle variance of Eq. �13�. In this way we have
accounted for both the internal fluctuations of the target site
and, through 
̄�r0 , t�, the decrease in relative mobility for the
approaching particle.
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