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The concept of a protein diffusing in its free-energy folding landscape has been fruitful for both
theory and experiment. Yet the choice of the reaction coordinate (RC) introduces an undesirable
degree of arbitrariness into the problem. We analyze extensive simulation data of an a-helix in
explicit water solvent as it stochastically folds and unfolds. The free-energy profiles for different
RCs exhibit significant variations, some having an activation barrier, while others not. We show that
this variation has little effect on the predicted folding kinetics if the diffusivity profiles are properly
taken into account. This kinetic quasi-universality is rationalized by an RC rescaling, which, due to
the reparameterization invariance of the Fokker—Planck equation, allows the combination of
free-energy and diffusivity effects into a single function, the rescaled free-energy profile. This
rescaled free energy indeed shows less variation among different RCs than the bare free energy and
diffusivity profiles separately do, if we properly distinguish between RCs that contain knowledge of
the native state and those that are purely geometric in nature. Our method for extracting diffusivity
profiles is easily applied to experimental single molecule time series data and might help to
reconcile conflicts that arise when comparing results from different experimental probes for the

same protein. © 2010 American Institute of Physics. [doi:10.1063/1.3442716]

I. INTRODUCTION

The problem of protein folding kinetics is formidable
from a purely statistical mechanics point of view: The un-
folded protein, in other words the entire ensemble of mi-
crostates that significantly deviate from the native state, tran-
sits via a myriad of distinct pathways to the folded (native)
state, and trying to predict folding times from basic prin-
ciples is obviously hopeless. Yet, robust features have
emerged both from experiments and theoretical concepts."2
A key fact is that any experiment that probes protein folding
or unfolding projects protein microstates onto a low-
dimensional (typically one-dimensional) observable. For ex-
ample, circular dichroism in the far ultraviolet and infrared
adsorption spectroscopy basically measure the average helic-
ity, while fluorescence is sensitive to side chain contacts or
local solvent structure around tryptophan residues.** Kinetic
information at ambient conditions and on short time scales
relevant for fast folding events can be obtained by time-
resolved spectroscopy after flash photohea‘ting5 or by fluores-
cence resonance/triplet-triplet energy transfer (FRET/TTET)
correlation studies that couple to the distance between a do-
nor and acceptor linked to two positions along the peptide
chain.®” More recently, single-molecule spectroscopic tech-
niques have allowed the observation of time-dependent
folding/unfolding of individual proteins, thus going beyond
ensemble averaging.8’9 Likewise, single molecule studies
where forces are applied at two points along the peptide
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backbone probe the distance between those two anchoring
points. 19 All these experimental observables in fact constitute
distinct reaction coordinates (RCs).

Exponential distributions of folding times found for
many (but not all) proteins using different techniques suggest
two-state-folding as a quite general paradigm of folding ki-
netics: here the folded and unfolded states are separated by a
free-energy barrier along the respective RC.* Even proteins
folding via many intermediate states can produce a single-
exponential folding time distribution if there exists a rate-
limiting transition. Therefore, as long as the RC of choice
distinguishes the two states connected by the rate-limiting
step, using different kinds of measurement/RC would likely
generate similar single-exponential kinetics even in such a
case. Similar conclusions can been drawn from the direct
observation of population distributions, where a free-energy
barrier means that folding intermediates are rarely
observed.®*” The recent observation that different experimen-
tal techniques yield different kinetics'' or distribution
functions'>"* when applied to the same protein casts doubt
on the clear division between two-state (exhibiting a free-
energy barrier) and downhill folders (without such a barrier).
In this paper we argue that such inconsistencies can arise
when implicitly referring to different RCs, and show a way
how to reconcile conflicting results.

In theoretical studies, various RCs have become popular
to characterize the folding transition, either because they ap-
proximately correspond to an experimentally accessible ob-
servable or because they are simple to calculate. The radius
of gyration, the fraction of native contacts between residues,
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or the mean distance from the native state are typical
examples.m’15 More complex topological order parameters
such as the contact order have been suggested for describing
universal features of protein folding kinetics.'® In the theo-
retical framework that naturally emerges, the protein diffuses
along the RC, governed by a stochastic equation and subject
to deterministic forces encrypted in the free-energy land-
scape, as well as stochastic forces due to the random
environment.'’ ™" Early on, it was realized that the diffusion
constant in this coarse-grained picture is an effective quantity
that takes into account the connectivity between states (i.e.,
the number of possible connecting paths), the energetic rug-
gedness of such paths,20 as well as orthogonal degrees of
freedom.?' As folding progresses, internal friction starts to
play a more dominating role,”*** while solvent friction be-
comes less important as more and more peptide groups lose
solvent contact.’ Recently, the simplification of a constant
diffusivity was abandoned and a diffusivity profile was ex-
tracted from simulations of peptides: these works either con-
sidered proteins without solvent (and thus exclude variations
of the solvent friction)**® or considered exclusively short-
time dynamics and thus are not applicable to global folding
kinetics.”” The trifold coupling between the choice of a spe-
cific RC and the free energy and diffusivity profiles in the
presence of explicit solvent has remained elusive.

In this paper, we perform an in-depth analysis of long
MD trajectories of an a-helix-forming oligopeptide includ-
ing explicit water. Such model peptides form the subject of
detailed experimental studies and constitute some of the sim-
plest peptides that exhibit nontrivial folding kinetics.”® They
are thus interesting in their own right and at the same time—
due to their minute size—allow for realistic modeling over
times much longer than their folding times, including solvent
degrees of freedom.” As a prerequisite for our analysis, we
introduce a simple way of extracting diffusivity profiles from
time series data for an arbitrary RC, which can be conve-
niently applied to experimental spectroscopic data,” or force
spectroscopic data for RNA,* or proteins31 as well. We dem-
onstrate that different RCs for one and the same protein tra-
jectory are associated with substantially different free-energy
profiles, some showing a barrier separating the folded and
unfolded helix state, some showing no barrier at all (which is
not surprising and has been found in different contexts
before®”). This resembles the experimental findings in con-
nection with the dispute on downhill versus two-state
folding,l2’13 but is resolved by accounting for the spatially
inhomogeneous diffusivity: The diffusivity profiles are full
of structure and show considerable variation among different
RCs. No simple connection between the free energy and dif-
fusivity profiles seems to exist. Yet, the folding kinetics pre-
dicted using a stochastic approach based on the free-energy
landscape is largely independent of the RC if and only if the
diffusivity profile is taken into account. Thus, the variance
between free-energy profiles along different RCs gives rise
to kinetic universality if the coupling to diffusivity is in-
cluded (where we distinguish between RCs that contain
knowledge of the native state and those that are purely geo-
metric in nature). This specifically means that the presence of
a free-energy barrier (i.e., absence of intermediate states) is
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in principle compatible with both exponential and nonexpo-
nential kinetics, and that different experimental probes are
bound to measure different free-energy profiles. The same
conclusions also apply to more refined or optimized
RCs.**7 Full understanding of protein folding kinetics thus
requires measuring both average distributions and kinetic tra-
jectories. Similar conclusions were very recently drawn from
a Bayesian analysis of folding trajectories of simple coarse-
grained model peptides based on implicit-solvent
simulations.” Since a-helices are a prominent folding motif,
the features we find are most likely relevant for more com-
plex proteins as well.

Il. METHODS
A. Simulations

Standard all-atom molecular dynamics (MD) simulations
provide 1.1 us trajectories of an alanine (A)-based peptide
with sequence Ace-AEAAAKEAAAKA-Nme in explicit
water,29 which is a shortened version of similar sequences
with charged Glu*(E) and Lys™(K) residues at positions i and
i+4 that experimentally are known to spontaneously form
a-helices.”® The mechanism for a-helix formation involves,
in addition to the stabilizing influence of E-K salt bridges,
hydration effects.””*® The MD simulations utilize the parallel
module sander.MPI in the AMBER 9.0 package with the ff03
force-field and the TIP3P water model at a pressure of 1 bar
and a temperature 7 fixed by a Berendsen barostat and
Langevin thermostat, respectively.39 The periodically re-
peated cubic simulation box has an edge length L=36 A
including ~1500 water molecules. Electrostatic interactions
are calculated by particle mesh Ewald summation and real-
space electrostatic and van der Waals interactions are cut off
at 9 A. As a check on the convergence of the standard MD
simulation, replica-exchange MD (REMD) simulations are
performed with the AMBER10 simulation package.39 Here, the
same force-field and system parameters as in the other stan-
dard MD simulations are employed, apart from switching to
a constant volume ensemble. 32 replicas are considered in a
temperature range between 265 and 520 K, with each replica
simulated for 22.5 ns, amounting to a total sampling time of
720 ns. Temperature exchanges between neighboring replicas
are attempted every 250 integration steps, leading to an ex-
change rate of 10%-30%.

B. Reaction coordinates

Trajectory analysis is performed using the ptraj tool in
the AMBER package.39 The helicity (i.e., the a-helical frac-
tion) is identified using the DSSP method by Kabsch and
Sander.* In addition, we focus on five different RCs to fol-
low the folding kinetics (Table I):

(1) Q,, defined as the root-mean-square distance from a
fully helical reference structure, averaged over all M
atoms of the peptide. The reference structure was cho-
sen randomly from configurations which display
100% helicity, with little variation depending on the
specific choice.
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TABLE I. List of RCs used in the paper.

RC notation Description
0 RMS deviation from perfect helix
0, Native intrabackbone hydrogen bond length
05 Inverse native hydrogen bond length
(N Radius of gyration
0Os End-to-end distance

(i)  The mean native hydrogen bond (HB) length, Q,
=E§i‘l4r,-,,- w4/ (N=4), averaged over all N=14 residues
including the acetyl (Ace) and amine (Nme) end caps,
where r; ; is the distance between HB forming atoms,
i and j, in the peptide backbone.

(ili) The mean inverse HB length, Q;=1-(N

—4) S 4l T ieas Where 1), =2 A is the native
HB length in the folded state, defined by the most
probable length of each (i,i+4) HB.

(iv) The radius of gyration, Q4= [Eu W j/(2M2)]”2, a
measure for the average peptide size and accessible in
scattering.

(v) Qs, the distance between the centers of mass of the
end caps.

Trajectories are recorded with a resolution of 20 ps, giving a
total of 54171 data points. To compare different RCs with
each other, we exclude for each RC the 11 smallest and 11
largest values, and define rescaled RCs

mm)/(dex mm) , ( 1 )

such that the minimal and maximal values of the remaining
54 149 data points, denoted as Q™" and Q", are projected
on the RC values ¢;=0 and g;=1, respectively.

q:=(0Q;

C. Diffusion constant

We assume that the stochastic time evolution of a given
RC is described by the one-dimensional Fokker—Planck (FP)
equation41

] a a
7 -2 -Br(Q) 7 BF(Q)
o Y. aQD(Q)e aQ‘I’(Q,t)e . (2)

where W(Q,1) is the probability of having a configuration
with RC value Q at time 7z, D(Q) is the (in general
QO-dependent)  diffusivity, B=1/(kgT) and BF(Q)=
—In(¥(Q)) is the free energy, where (W(Q)) is the time-
averaged probability distribution. A few methods to extract
D(Q) from time series data based on Bayesian analysis of
transition rates’*** or short-time fluctuations have been
described.”>?" Our method extracts D(Q) directly from fold-
ing times. Define 7p(Q, Q') as the mean first passage (MFP)
time to go from a state Q to some final state Q/ without
recrossing @/, corresponding to an adsorbing boundary con-
dition at Q’. For the case Q> 0’ one finds®

(0, Qf) f g’

ﬁp Q ) mdx

do" —BF(Q”)’ 3
b)), Qe (3)

and for Q<O one has
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PP
D(Q’) Qmin
where at Q™" and Q™ reflective (zero-flux) boundary con-

ditions hold. By differentiation with respect to Q, we obtain
the diffusivity for 0> Q'

PP Qmx
I1(Q.01)100 )
and for Q< Q' as

PF(Q) 0
I7ep(Q.0)/9Q ) gmin
An even simpler procedure employs the round-trip time

7=1(0.Q") =sign(Q — QN[ (0. Q") + (07, 0)],  (7)

the magnitude of which is the time needed to start at Q, reach
O for the first time, start from O, again and reach back to Q
for the first time. One finds

0
(0, 0') = f 'q dQ"e PrQ") (4)
0

D(Q) = dQ'e P, (5)

dQ/e—BF(Q’)_ (6)

D(Q) =~

SBFQ")
D(Q')’

(Y]
wr(Q.0))=Z J do’ (8)
of

where Z=[ g:,a: dQe P is the partition function. The diffu-
sivity profile based on the round-trip time reads

ZeBF(Q)
Ir(Q,0)/19Q

Intuitively, the slope of the round-trip time function is in-
versely proportional to D(Q). For a given F(Q), a larger
slope implies a slower return to the starting point, or equiva-
lently a smaller local diffusivity. The FP approach assumes
an underlying Markovian process, meaning that D(Q) and
thus drxr(Q,0Q)/dQ are independent of Q. We exploit (and
check) this by defining a mean round-trip time function
Trr(Q) that results from an average of round-trip times
=7(Q, Q") over their final states Q. Since on the FP level
rr(Q., Q") curves for different @ differ only by an additive
constant, we should be able to collapse all such curves onto
Trr(Q). The assumption of Markovian behavior breaks down
at short times and for unsuitable RCs (i.e., RCs that do not
single out the transition state, as will be explained in detail
later on) and is clearly indicated by deviations of the round-
trip time functions for varying @/, 7x(Q, @), from the mean
7rr(Q). Insight into this can be gained with a simpler defi-
nition of the diffusivity based on the variance in RC space27

Dyar(Qo, 81) = ((Q(61,09) = (Q(1,00))*)/ (281, (10)

where Q(6t,Q,) denotes one specific realization of a path
that starts at Q, at time &=0. As we will demonstrate,
D,.(Qy, 5r) sensitively depends on the lag time & To get
accurate results, ot should be small enough that the region
explored by the RC in this time interval has an approxi-
mately constant first derivative of the free energy; however if
ot is below a threshold time scale, the resulting D, may be
dominated by non-Markovian properties. We will mostly use
the round-trip method for determining D(Q), but compare to
the other methods as well.

D(Q) = 9)
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FIG. 1. Complete time series data of the simulation run for the peptide in explicit water. Shown are helicity and the five considered RCs defined in Table I.
Lines in black/blue show the full resolution data (20 ps), while red lines are smoothed over time windows of 2 ns. The right panels show selected data
windows at higher time resolution for ¢, and g5 together with a few selected MD snapshots of the peptide backbone structure.

In our analysis of the simulation time series data we
discretize RCs in typically K=50 intervals and normalize
probability distributions according to =&k, W(QW,7)=K.

D. Fit of round-trip times

To extract D(Q) from the simulation data requires esti-
mating the derivative d7x(Q)/dQ. We start by fitting a
smooth function to the numerical results, exploiting the fact
that 7z(Q) should be a monotonically increasing function of
Q. Thus the fitting function 7xt ;,(Q) can be expressed in the
form

Q
Ter Q) = Term(Q™) + J —dQ’ e, (11)
leﬂ
where W(Q') is an arbitrary function. We expand out W(Q')
in a basis of cubic B-splines defined over the range Q™" to
O™, and use the coefficients of the expansion as fitting
parameters. The size of the basis is fixed at 40 splines. The
full expression for 7y, (Q) is fit to the simulation estimate
for Tz7(Q) using a standard least-squares technique, with one
modification: the quantity to be minimized is the sum of
squared residuals plus another term which penalizes rough-
ness in the fitted function. This additional term has the form

A2 QmmdQ (dW(Q")/3Q")?, with smoothing parameter X\.
Larger values of \ lead to progressively smoother fits to the
data. The entire fitting procedure is implemented through the
Functional Data Analysis package in the R programming
language.44 For all the results shown below we set A=50,
since we found that varying A in the range of 10-200 had
minimal effect on the resulting diffusion profiles. The units
of \ are (8)? (Qax—Oumin)» Where 8t=20 ps is the time res-
olution of the MD simulation. The range N\ <10 is unsuitable
because we fit to jagged features in the simulation Tz(Q)
curve, which are the result of statistical noise. For the range

A>200, we over-smooth the curve, losing most of the local
slope information and resulting in poor fits to the round-trip
function.

E. Reparameterization

As is well-known, ¥ the FP Eq. (2) is invariant under

an arbitrary RC rescaling 0=0(0Q) if the functions ¥, F, and
D are simultaneously rescaled as V= Q’, F=F
+B'1InQ’, and D=(Q')*D. Here, Q' =dQ(Q)/dQ is as-
sumed positive. Thus an arbitrary diffusivity profile D(Q)
can be obtained, while the kinetics on the FP level and the
partition function Z stay invariant, as long as the folding free
energy is adjusted accordingly. For the particular choice of a

constant diffusivity, 5:50, we get Q'= 50/D and thus

F=F-(28)"'In(D/D,).

lll. RESULTS

Figure 1 shows the complete times series data for the
simulated oligopeptide. In all five RCs and in the helicity
data frequent switching between the folded state (large helic-
ity and small ¢; values) and the unfolded state is observed,
meaning that the simulation is converged and allows drawing
conclusions on the folding and unfolding Kinetics (further
evidence is provided by the excellent comparison between
straight MD and replica-exchange simulations, as shown in
Fig. 6). The fine resolution data (Fig. 1, right panel) in terms
of the rms-deviation from the fully helical state, RC ¢, sug-
gest that an intermediate state and two barriers are present.
As the snapshots indicate, in the fully helical state (g,
~(0.1) roughly three a-helical turns are stabilized by salt
bridges between the Glu*-2 and Lys™-6 and the Glu*-7 and
Lys™-11 residues, respectively. In the intermediate state (g,
~(.4) only one of the two salt bridges stabilizes two turns,
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FIG. 2. Mapping from RC g, to different RCs. Plotted is the mean distri-
bution (W(g)) for the entire time series data in Fig. 1 and—in different
colors—selected regions of the distribution corresponding to narrow inter-
vals of g, values.

while in the unfolded state (¢;=0.7) no bridge is present.
Note that the characteristic transition time for unfolding of
one helical turn, i.e., for the transition from ¢;=~0.4 to ¢,
~(0.7 in (d), is roughly 200 ps and thus about 100 times
shorter than the corresponding unfolding time in Fig. 3(e).
While a high degree of correlation between different RCs
can be inferred from Fig. 1, there is no one-to-one mapping,
e.g., g5 in Fig. 1(c) shows pronounced fluctuations in inter-
vals where ¢g; stays virtually constant.

This is already evident from the average distribution
function (W(g)) shown in Fig. 2 as a function of all different
RCs. While the distribution (W(g,)) in the leftmost panel as
a function of g; shows three broad peaks (corresponding
roughly to none, one and two intact salt bridges), clearly
separated peaks are absent when (W) is shown as a function
of g5, g3, q4, or gs. The reason is simple: states that are
separated when, e.g., described by ¢, are mixed when they
are projected onto different RCs. This is demonstrated by the
colored regions in Fig. 2 that for g, correspond to pure states,
i.e., narrow intervals of g; values. While for g, and g3, the
colored regions are smeared out but the ordering along the
RC is preserved, for g, and g5 the ordering is lost. This
points to a fundamental difference between the RCs
q1-92,93, which embody knowledge of the native state, and
the RCs ¢g4,¢g5, which are purely geometric.

In Fig. 3, we focus on RC g,. The free-energy profile
BF(q,)=—In(¥(q,)) in a) reveals the intermediate state and
two barriers at ¢, =0.26 and ¢, = 0.48. Figure 3(b) shows the
roundtrip times mxr(q,,q}) for various final states ¢} as a
function of g;, directly extracted from the simulation time
series.”” The data sets are shifted vertically [which according
to Eq. (9) is irrelevant for extracting D(g,)] to illustrate the
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FIG. 3. Results for RC ¢, (note that the upper scale is in terms of the
unrescaled RC Q,). (a) Free-energy profile BF=-In(W). (b) Data points give
the round-trip times TRT(ql,q’;) as extracted from the simulation data for
various final states ¢ that are denoted by vertical colored bars. The data is
shifted vertically for each qfl to illustrate the theoretically predicted collapse
onto a single mean round-trip curve 7gp(q,), with the smooth fit gt 5(g;)
shown in blue. The red curve denotes the round-trip time from the Bayesian
approach. (c) Diffusivity from the round-trip time method equation (9) (blue
curve), compared to the variance method equation (10) for lag times ot
=200 fs, 20 ps, and 200 ps (dash-dotted, dashed, and dotted green curves),
and to the Bayesian method (red curve) (Ref. 42). (d) MFP or folding time
7p(q1¢}) for the final state ¢}=0.11, as extracted directly from the simu-
lation data (circles) and compared to predictions from Eq. (3) using the
different diffusivities shown in (c). (¢) MFP or unfolding time for the final
state ¢} =0.57, same notation as in (d). Vertical dotted lines in [(d) and (e)]
mark the final states q’] for folding and unfolding.

predicted collapse onto a single mean round-trip time func-
tion Trr(g;). The smooth fit Try(g;) is shown as a blue
curve. The collapse of 7rr(g; ,q’f) for different q’I is a strong
check on the consistency of the FP approach. The red curve
denotes the round-trip time from the Bayesian approach,42
obtained for optimized time interval and smoothing param-
eters Ar=6 ns and y=0.2 ns~1.Y Figure 3(c) shows the dif-
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fusivity D(q;) extracted from 7y g(q;) via Eq. (9) (blue
curve). Most notably, D(g;) varies considerably along ¢,: it
is reduced by an order of magnitude around the intermediate
state at ¢, =0.32 and seems correlated with F(q,). The D(q;)
profile from the Bayesian approach (red curve) reproduces
the coarse features of our round-trip approach with a slight
difference that will be discussed below. We stress that we
have fitted the two parameters in the Bayesian approach,
namely, the time interval and the smoothing parameter, by a
comparison with the simulation mean-first passage times (see
supplement for further details*’). The diffusivity profiles re-
sulting from the Bayesian approach sensitively depend on
these parameters, and without such a comparison, it is not
easy to see what are the sensible parameter values. This
highlights an advantage of our method based on the round-
trip time, since the only parameter is a smoothing factor that
operates directly on the round-trip time, a physical observ-
able, and sensible parameter values are straightforwardly es-
timated. The variance method equation (10) for lag time &f
=200 fs (upper green curve) overestimates D(g;) by two
orders of magnitude, yet for 5/=200 ps (lower green curve)
D, approaches the results of the other two methods quite
nicely. Thus for 6t<<200 ps, D, is dominated by non-
Markovian events that are unrelated to the long-time folding/
unfolding dynamics; interestingly, this threshold time is simi-
lar to the transition time for helix unwrapping inferred from
Fig. 1(d). In Figs. 3(d) and 3(e), we show MFP times
7p(q1,¢q}) for ;> ¢} =0.11 (folding) and ¢, <¢|=0.57 (un-
folding) calculated from Eq. (3) and the various D(gq,) pro-
files shown in (c). 7p(qy,q}) directly extracted from simula-
tion data (circles) in Fig. 3(d) is most accurately reproduced
by the Bayesian fitting approach (red curve), as expected
since the probability distribution and thus the frequency of
transitions is maximal in the range g;~0-0.25 [see Fig.
2(a)]. The RT approach (blue curve) considers an equal bal-
ance of folding and unfolding events and consequently de-
scribes unfolding MFP times in Fig. 3(e) better. Notably, the
RT approach is simple to implement, directly works on the
property one wishes to describe (namely, folding/unfolding
times) and has apart from the functional form of the fitted
round-trip time Tgy(g;) no freely adjustable parameter. The
combined deviations between simulation data and FP predic-
tions in Figs. 3(d) and 3(e) are due to a combination of
non-Markovian processes at short times and insufficient tra-
jectory sampling.

In Fig. 4(a), we compare the diffusivities based on the
round-trip time approach (blue curve) and the Bayesian ap-
proach (red curve), already presented in Fig. 3(c), with re-
sults obtained from the MFP times via Eq. (5), shown as a
green curve. For the fit we used a final state ¢/=0.11 and
considered folding events from ¢, >q’f to q’f It is seen that
the three curves roughly coincide, which testifies to the ro-
bustness of methods for deriving diffusivities from folding
times. In Fig. 4(b), we compare diffusivities from the vari-
ance method, Eq. (10), to the round-trip time method Eq. (9)
(blue curve). Here we present results for D,,.(Q,d) for a
wider range of lag times of =200 fs, 20 ps, 200 ps, 2 ns,
and 10 ns (green curves, from top to bottom). It is seen that
for lag times between =200 ps and &t=2 ns, D, (Q, &)
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FIG. 4. Results for RC g;. (a) Diffusivity from round-trip time method Eq.
(9) (blue curve) and the Bayesian approach (red curve); these are the same
data already shown in Fig. 3(c). The green curve is based on the first passage
time method and follows from Eq. (5) for the final state ¢}=0.11. (b) Dif-
fusivity from the round-trip time method Eq. (9) (blue curve) compared to
the variance method Eq. (10) for lag times 8r=200 fs, 20 ps, 200 ps, 2 ns,
and 10 ns (green curves, from top to bottom).

agrees with the round-trip time approach. As already dis-
cussed, for smaller lag times D,,(Q, &) is too large. For
larger lag times D,,(Q, &) loses structure and becomes too
small, which has to do with the fact that at those times the
peptide explores a considerable subsection of the free-energy
space and the effect of the energetic barriers encountered is
spuriously accounted for by a reduction of the diffusivity.
The situation is similar to the Bayesian approach: there is no
a-priori way of knowing what the suitable parameter value
for the lag time is, unless one compares to a physical observ-
able, which might be the folding or round-trip time. In that
case, however, a direct fitting of D(g) based on folding times
as suggested by us seems more direct and transparent.

A free-energy barrier, as exhibited by F(q,) in Fig. 3(a),
was argued to arise from a subtle compensation of energy
and entropy effects, which both increase upon unfolding.3
This scenario, developed in the context of lattice models, is
basically confirmed by our explicit water simulations. In Fig.
5(a), we show free-energy profiles at different temperatures
T from replica-exchange simulations. Indeed, the entropic
contribution 7S, estimated from the free-energy difference
between 7=280 and 320 K, shows considerable numerical
error but rises across the unfolding transition. In Fig. 5(b),
we show the number N, of backbone-bound water mol-
ecules that have a distance to a backbone oxygen smaller
than 0.35 nm. Apart from the loss of one bound water mol-
ecule at ¢, =0.3 (paralleled by a helicity increase), Ny,
steadily rises from about N=20 in the folded state to N=30
in the unfolded state. So we conclude that the entropy in-
crease upon unfolding results from a competition of water
binding and conformational effects. The overall good com-
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FIG. 5. (a) REMD results for the free-energy profile BF(q,) for different
temperatures 7, together with the entropic contribution 7'S obtained from the
finite-7T difference (with AT=20 K) of BF(q,). (b) Helicity and the number
Ny, of backbone-bound water molecules vs. g; at 7=300 K. The horizontal
broken lines denote 20, 21, and 22 backbone—bound water molecules.

parison between the free-energy profile from a standard MD
simulation run (for a length of 1.1 ws) and results from a
replica exchange MD simulation (trajectory length 22.5 ns
and equilibrated with 32 replicas at different temperatures) at
T=300 K in Fig. 6 gives good evidence that the times series
considered in our kinetic analysis is long enough.

The appearance of a free-energy barrier, as seen in F(gq;)
in Fig. 3(a), is often interpreted as equivalent to exponential
kinetics, which is not necessarily true as we will now dis-
cuss. In fact, even the presence of a free-energy barrier de-
pends on the specific RC employed and thus is a much less
robust feature than often assumed. In Fig. 7, we show the

L B

3;\\\\\\\\\\\\\\\\\\\\\\\\
F 4

— continuous MD /
—- REMD / E

) R B B RN RN B B AT A B
0O 01 02 03 04 05 06 07 08 09 1

4,

FIG. 6. Comparison between REMD results (red broken curve) and standard
MD results (black solid curve) for the free-energy profile BF(q;) at
T=300 K.
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free energy F(g;) and diffusivity D(g;) profiles of all five
RCs. We separate RCs that embody knowledge of the native
state ¢;,¢,,q3 and the unbiased RCs ¢,,¢s. In the columns
marked “original,” we use the bare RCs ¢; as defined in Sec.
II; in the columns marked ‘“transformed,” we use rescaled

RCs §; such that the diffusivities are constant, D(g;)=Dj.
Two features strike the eyes:

(i)  Most diffusivity profiles are full of structure and vary
substantially along the reaction path; it immediately
transpires that a description of the folding kinetics
without consideration of the diffusivity profile can
fail.

(ii)  The profiles F(g;) and D(g;) vary considerably among
different RCs. In fact, while F(g,;) shows pronounced
barriers and an intermediate state, the profiles F(g,)
and F(gs) are free of barriers: We conclude that the
presence of barriers depends on the RC chosen.

Do the kinetics within an effective FP description also
vary among RCs, possibly showing exponential for some and
nonexponential behavior for other RCs? While the free-
energy profiles F(g;) as a function of the original RCs show

large variations, the profiles F (g;) after the transformation
are quite similar (this is most striking for the radius of gyra-
tion, g4, and the end-to-end radius, gs), and thus the kinetics
as characterized by the MFP times 7gp(g;,¢!) in the bottom
row are very similar. This at first surprising result can be
easily rationalized: the round-trip method is designed to op-
timally reproduce the complete set of round-trip times and
thus the slowest conformational transitions in the system.
The different diffusivities D(g;) and free-energy profiles
F(gq;) together uniquely determine the folding times. Assum-
ing that different RCs yield a comparable separation of states
into the unfolded and folded basins, it follows that the fold-
ing times must be very similar. This in fact holds for the RCs
q1-9>,q3 on the one hand and for the RCs ¢4, g5 on the other
hand. Since after the rescaling the entire kinetic information
is contained in the free-energy profile, those profiles must be
quite similar. It follows that the presence of a free-energy
barrier does not necessarily imply exponential kinetics; for
that statement to be true the free-energy barrier must persist
after a RC transformation that makes the diffusivity profile
flat. Although there are still differences among the free-
energy profiles for q;,q,, g5 after the transformation, they are
small enough that the kinetics are not particularly distin-
guished.

To highlight the implications of these results, we now
turn the argumentation around. Consider a general RC trans-
formation

g=q+c(tanh[(g — ¢")/d] - 1), (12)

which is assumed to be a monotonic function implying that
d>—c. This rescaling corresponds to a local stretching/
compression of the RC around ¢* and via the reparametriza-
tion properties of the FP equation also modifies the diffusiv-
ity and the free-energy profiles. In Fig. 8, we show three

different rescaled F' (7,) and 5(47 1) profiles, all generated via
Eq. (12) from the RC g, for which D(g,) is flat (shown in
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are constant. The final states qif for the folding (marked by dotted vertical lines) are chosen such that they map onto a single value ?jif separately for the

41-92-93 and gy4,qs groups.

blue). Depending on the parameters ¢*,c,d we generate free-
energy profiles that either exhibit a more pronounced barrier
(green curve), a reduced barrier (red curve), or a free-energy
profile where the position of the minimum is moved from the
folded to the unfolded state (turquoise curve). We mention
that by construction, the kinetics as characterized by the
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FIG. 8. Free-energy (top) and diffusivity profiles (bottom) for different res-
caled RCs g,. Starting from the RC exhibiting a flat diffusivity (shown in
blue), we arbitrarily rescale g, according to Eq. (12) such as to increase the

barrier (green), decrease the barrier (red) and to relocate the stable minimum
(turquoise).

round trip or MFP time is invariant under this rescaling.
What this figure demonstrates is that under a combined res-
caling of F(g) and D(g) one can generate a bewildering va-
riety of free-energy curves which share the identical kinetics,
meaning that the free-energy profile without the diffusivity is
not sufficient to even qualitatively predict protein folding
kinetics.

Much of the preceding discussion and the usage of one-
dimensional RCs presumes that the RCs are “good” in the
sense that (i) the ensemble of transition states is assigned to
a narrow region of RC values and (ii) that the probability of
finding a transition state in that region is maximal.**** To
make that notion more concrete, one introduces the splitting
probabilities ¢*(q) and ¢B(g) for each value of the RC,
where ¢*(g) is the probability to reach, starting from RC
value ¢, region A before region B.** In the context of transi-
tion states, the regions A and B would denote regions corre-
sponding to the folded and unfolded domains flanking the
transition region. The splitting probabilities are normalized
as

M)+ ¢%(@) =1, (13)

since eventually any state will diffuse out toward the bound-
aries. For a trajectory that passes through state ¢, there are
four choices: it can be trajectory starting in A and returning
to A, starting in B and returning B, starting in A and ending
up in B or starting in B and ending in A. The respective
probabilities are normalized as

P(A — Alg) + P(A — Blg) + P(B — Alg) + P(B — B|g) = 1.

(14)
For nonballistic stochastic motion, the transition path prob-
ability P(TP|q)=P(A—B|q)+P(B—Al|q), i.., the prob-

ability that the trajectory connects regions A and B, can be
maximally 1/2. A maximum close to 1/2 characterizes a good
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complete trajectory contains 181 transitions between A and B (90 from A to
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(orange) and ¢B(q,) (blue) and the transition path probability P(TP|q;)
(red). P(TP|gq,) reaches the maximum value P(TP|q,)=~0.43 for q,=¢
~(.23, denoted by a red circle in (c) and red lines in [(a) and (b)].

RC, a significantly smaller number points to a bad RC. In
Fig. 9, we show a detailed RC analysis for RC ¢; with a
resolution of 25 bins in the range 0.1 <g;<<0.33 and using
the full time resolution of 20 ps. In (a), we show again the
complete time series and in (b) the corresponding probability
distribution. Region A for ¢;<<0.1 is the folded region; re-
gion B for ¢;>0.33 is a region where one helical turn is
unfolded. In (c), we show the splitting probabilities ¢*(g,)
and ¢®(q,) (orange and blue lines). The behavior is as ex-
pected, with the probabilities switching from zero to unity
between the boundaries of the regions A and B, and a rather
large slope in the region around ¢;=~0.25-0.30. The maxi-
mum of the transition path probability P(TP|q})=~0.43
(shown as a red curve) at a position gj=~0.23 means that g,
is quite close to a perfect RC and that the FP analysis per-
formed in this paper is appropriate for long times on the
order of folding and unfolding events. Note that qf ~(.23 is
close to a minimum in the equilibrium distribution {¢(q,)),
see Fig. 9(b), at which position the free energy thus exhibits
a maximum. This is coincidental, since as we have shown in
Fig. 8, one can easily change the free-energy profile by a
reaction-coordinate rescaling, which however leaves the
splitting probabilities and the transition path probabilities in-
variant.

IV. CONCLUSIONS

In the naive approach toward protein kinetics, folding
times are deduced from the free-energy profile F(Q) alone.
As has been argued before,”*™>’ such an approach is unreli-
able since for the simplest nontrivial folder, namely, a single
short a-helix in explicit solvent, the diffusivity profile D(Q)
varies substantially along the folding path. Our D(Q) varia-
tion comes out somewhat stronger than from similar simula-
tions with implicit solvent, suggesting that explicit solvent
further increases the importance of  diffusivity
inhomogeneities.24 In fact, to match experimental folding

J. Chem. Phys. 132, 245103 (2010)

times of simple alpha-helix-forming oligopeptides within
solvent-implicit simulations, an overall correction factor to
the time scales is typically applied.48’49 A detailed micro-
scopic justification for this is lacking; on the contrary, it has
been shown that in many cases explicit solvent strongly in-
fluences the free-energy landscape and introduces novel ki-
netic mechanisms that are completely absent in solvent-
implicit simulations.”™! When extending the analysis to five
different popular RCs, we find free-energy and diffusivity
profiles to vary substantially among different RC representa-
tions. Yet, the kinetics that follows from an FP description is
largely independent of the RC chosen, if and only if D(Q) is
properly accounted for. A similar conclusion was reached
recently based on coarse-grained, solvent-implicit
simulations.”® This means that a quasi-universal (i.e., RC in-
dependent) description of protein folding kinetics necessarily
involves D(Q). For this quasi-universality to hold we have to
distinguish between RCs that are based on the distance to the
native state (such as Q;,0,,05) and those that are purely
geometric in nature (such as Q,,Qs). By considering gener-
alized RCs and using the reparametrization invariance of the
FP equation, we can design arbitrary F(Q) profiles with no
barrier at all, an enhanced barrier, or an interchange of the
naive stable and unstable states. This means that the concept
of a free-energy profile is to some degree arbitrary, which
might be relevant with regards to recent discussions in the
experimental literature.' ™" The kinetics, embodied in the
folding time, and dependent on F(Q) and D(Q), is less arbi-
trary.

Our simulations are for a single a-helix fragment, one of
the shortest oligopeptides which shows nontrivial folding.
There is no reason to believe that for larger proteins the
situation will simplify; we therefore argue that the diffusivity
profile will be full of features and thus important in those
more complicated situations as well. Our conclusions also
apply to optimized or otherwise carefully selected RCs, 7
since the reparametrization can be done for any RC and thus
arbitrarily create, annihilate and shift barriers in the folding
landscape (incidentally, RC ¢, turns out to be a quite good
RC according to the definition of Ref. 34, as shown in Fig.
9). Our method of extracting the diffusivity profile via the
mean-first-passage or round-trip time formalism can be eas-
ily applied to time series data from FRET or force-
spectroscopic experiments, so an experimental test of our
results is possible.
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