
Ji et al. Heritage Science           (2021) 9:152  
https://doi.org/10.1186/s40494-021-00618-w

RESEARCH ARTICLE
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Abstract 

Attribution of paintings is a critical problem in art history. This study extends machine learning analysis to surface 
topography of painted works. A controlled study of positive attribution was designed with paintings produced by a 
class of art students. The paintings were scanned using a chromatic confocal optical profilometer to produce surface 
height data. The surface data were divided into virtual patches and used to train an ensemble of convolutional neural 
networks (CNNs) for attribution. Over a range of square patch sizes from 0.5 to 60 mm, the resulting attribution was 
found to be 60–96% accurate, and, when comparing regions of different color, was nearly twice as accurate as CNNs 
using color images of the paintings. Remarkably, short length scales, even as small as a bristle diameter, were the key 
to reliably distinguishing among artists. These results show promise for real-world attribution, particularly in the case 
of workshop practice.
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Introduction
Machine learning (ML) analysis for artwork is a bud-
ding methodology aimed at advancing connoisseurship, 
the primary method of determining the attribution of 
an artwork, among other applications involving artistic 
style. ML was successfully applied to images of paint-
ings for tasks including detecting forgeries [1, 2], classi-
fying digital collections [3, 4], and discerning an artist’s 
style [5–8]. While many of these studies have applied 
ML to high-resolution photographic images of paint-
ings, in this report, we use ML to analyze topographical 
data obtained by optical profilometry. Further, advance-
ments in the resolution, speed, and availability of such 
non-contact profilometric measurements are growing 
alongside big-data methods that can handle the large 

datasets produced by these measurements. In paintings, 
surface topography reveals unintended stylistic elements 
embedded in the surface of the painting that may include 
the deposition and drying of the paint, patterns in the 
brushwork, physiological factors, and other aspects of 
the painting’s creation.

A critical aspect of assessing attribution is under-
standing how members of artist-led workshops cre-
ated works of art [9]. Many notable artists, including El 
Greco, Rembrandt, and Peter Paul Rubens, employed 
workshops, of varying sizes and structures, to meet 
market demands for their art. Connoisseurship has 
been widely successful at establishing a basis for work-
shop attribution in art historical studies. Additional 
information on the methods of connoisseurship in 
technical art history, and an overview of workshop 
practices is presented in the first section of Additional 
file  1. Practitioners of connoisseurship examine the 
visible stylistic elements of a composition, along with 
material elements, condition, and other clues about the 
fabrication process to build a historical understand-
ing of the attribution of an artwork. Yet, many of the 
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specifics concerning workshop practice remain elusive. 
In the case of workshops, the various artists attempt to 
create a complete painting with a singular style, chal-
lenging the methods of connoisseurship. Further, the 
challenges of such attributions create conflict when 
the attribution is closely tied to the apparent value of 
objects in the art market. Hence, there is need for unbi-
ased and quantitative methods to lend insight into dis-
puted attributions of workshop paintings.

We hypothesize that significant unintended stylistic 
information exists in the 3D surface structure embedded 
by the painter during the painting process, and that this 
information can be captured through optical profilom-
etry. In addition, differences in the artist’s intrinsic and 
unintended style will be revealed by investigating patches 
at a much smaller length scale than any recognizable fea-
ture of the painting. By focusing on small features, we 
move away from intended stylistic information and allow 
for comparison of nearby regions within the same work 
of art. We further propose that a measurable unintended 
stylistic property that exists over small length-scales 
could be used to identify different hands in the same 
work of art; it could then be useful in attributing historic 
workshop paintings.

In this report, a controlled study of paintings commis-
sioned from several artists that mimic certain workshop 
practices are interrogated for indicative stylistic informa-
tion. The aim of this experiment is to explore the ques-
tions that (a) the brushstroke-produced high resolution 
profilometry data from a painting’s surface contain sty-
listic information (i.e., painters leave behind a measurable 
“fingerprint”), and (b) the data are such that ML analy-
sis can quantitatively distinguish among painters by the 
topographical information. Therefore, the experimen-
tal goal is to categorize small areas from the surface of 
paintings by their stylometric information, without the 
influence of purposeful stylistic choices (e.g., tools or 
materials) or factors regarding the subject of the paint-
ing. To this effect, a series of twelve paintings by four 
artists, and their associated topographical profiles, are 
subject to analysis to attribute the works and to ascer-
tain the important properties involved in those attribu-
tions. Our use of identical materials and subject matter 
among the artists creates a stronger focus on individual 
stylistic components and reflects the properties and goals 
of workshop paintings. The methods and controls we 
employ here are suited to each individual task: namely, 
to isolate stylistic components, to test the efficacy of 
ML techniques on surface topography for proper attri-
bution among several artists, to determine the length 
scales involved in the ML results, to compare with pho-
tographic ML, and to provide a basis for later studies on 
workshop paintings. We note, however, that the methods 

described here could find application elsewhere, such as 
forgery detection in contemporary art.

Design and data analysis
Designing a controlled experiment to study the so‑called 
painter’s hand
Historical paintings have known and unknown variables 
that contribute to their physical states, including the 
materials used, the artist or artists’ technique and style, 
and damage and restoration that have occurred over 
time. Each of these may contribute to the attribution of 
a painting. To ensure control over the stylistic and sub-
jective content of the test set of paintings, we enlisted 
nine painting students from the Cleveland Institute of 
Art. Each artist created triplicate paintings of a fixed 
subject, a photograph of a water lily (Fig. 1). Each paint-
ing was created using the same materials (paint, canvas) 
and tools (paintbrushes) as described in  the “Materials 
and methods” section below. In addition, the artists were 
instructed to treat the three versions as copies. To guide 
our investigation, four painting specialists (three art his-
torians and a painting conservator) grouped the paintings 
by artist style using traditional connoisseurship, selecting 
the works of four of the nine artists for our investigation 
based on their stylistic similarity.

Acquiring and preparing data from paintings
The surface height information for each painting was col-
lected by high resolution optical profilometry. Measure-
ments were conducted over a 12 × 15 cm region centered 
around the subject of the painting, with a spatial resolu-
tion of 50 microns, and a height repeatability of 200 nm. 
Given that brush strokes and their associated features are 
on the scale of hundreds of microns, this was sufficient 
for capturing the fine brushstroke features of the paint-
ing’s surface.

In preparation for the experiments, the height informa-
tion is digitally split into small patches, the central objects 
of the investigation, as depicted in Fig. 1B. A typical patch 
size for these experiments is 1 × 1 cm, or 200 × 200 pix-
els, though we eventually explored a range of patch sizes 
from 10 pixels (0.5  mm) to 1200 pixels (60  mm). The 
effect of this is threefold. First, it eliminates the subjective 
information (the water lily figure) from the patches, since 
these patches are too small to individually contain indica-
tory information.  Second, it gives a large enough set of 
data to enable using ML methods for each painter.  For 
example, the 3 paintings will provide 540 patches at the 
1 × 1 cm patch size. Finally, we use ML to quantitatively 
attribute the individual patches of the painting. So, by 
reconstructing the original topography from the patches, 
we can visually represent regions of the surface with dif-
ferent quantitative attributions. This will be important 
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for our future studies inspecting historical paintings, 
where different regions may represent the contributions 
of different hands, whether from different members of 
the workshop or later conservation attempts.

ML methods were then applied to the surface topo-
graphical information from the paintings to explore the 
following questions:

1. Is there enough information to differentiate among 
artists?

2. Which length scales contribute useful information?
3. How does topographical information compare to 

photographic data?
4. What machine learning methods provide the most 

accurate performance?

Machine learning to reliably attribute patches 
of topographical data to individual artists
Convolutional neural networks (CNNs) are a powerful 
and well-established method in computer vision tasks 
such as image classification [10, 11]. They generally con-
sist of three classes of layers: convolution, pooling, and 
fully connected layers [12] (see Additional file 1: Fig. S2). 
Convolution layers learn translation-invariant features 
from the data and pooling summarizes the learned fea-
tures. The stacking of these layers helps to build a hierar-
chical representation of the data. Fully connected layers 

input these extracted features into a classifier and out-
put image classes or labels. Identification using CNNs 
is  ideal for signals—such as topographical data—that 
have local spatial correlations and translational invari-
ance. However, training a deep CNN from scratch on a 
small dataset typically results in a problem known as 
over-fitting, where the network performs better on the 
training set, but often does not generalize well to unseen 
data. To avoid this, a common solution is transfer learn-
ing [13]: adapting a network that has been pretrained on 
a large dataset to a different but related task. For the case 
of CNNs pretrained on images, the initial layers perform 
general feature extraction, and hence are often applicable 
to a broad variety of image classification problems. The 
final fully connected layer (and sometimes several of its 
predecessors) is replaced and retrained for the problem 
of interest. This retraining of the network is fine-tuned 
in a block-wise manner, starting with tuning the last 
few layers, and then allowing further preceding layers to 
be trainable as well. In this work, the network we have 
used is an architecture called VGG-16 [14], which was 
pretrained on more than one million images in the Ima-
geNet dataset [15].

This transfer learning procedure allows us the full func-
tionality of a highly tuned deep CNN with specificity to 
our task of surface topography. In short, this CNN now 
is outfitted to take a small input patch of the painting and 
produce an output pertaining to attribution. The output 

Fig. 1 A Overview of the data acquisition workflow. B Sample patches of height data from each artist; each patch is 200 × 200 pixels (10 × 10 mm). 
C Schematic of the ML approach, which uses an ensemble of convolutional neural networks (CNNs) to assign artist attribution probabilities to each 
patch
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of our network is a 4-D vector whose components corre-
spond to the probability of attribution to one of the four 
artists in the experiment (Fig. 1C). Patches from two of 
the three paintings from each artist are used for training/
validation, with patches from the third painting reserved 
for testing. Because of the stochastic nature of the train-
ing procedure, involving presenting random minibatches 
from the training set over many epochs, the weights in 
the final network after training would be different if we 
were to repeat the whole procedure from the start. We 
take advantage of this stochasticity by creating ensembles 
of 10–100 different trained networks for each task we 
consider, using the mean of the probability vectors from 
the entire ensemble as the final prediction. We then cal-
culate the overall accuracy as well as  F1 scores, which is a 
measure of test accuracy for each artist. Such ensemble 
learning predictions in many cases outperform those of 
single networks [16]. Additional details of the network 
architecture, training, and fine-tuning procedure can be 
found in the “Material and methods” section and Addi-
tional file 1.

Results and discussion
Artist attribution results
The results of ensemble ML of 100 different trained net-
works for attribution using patches of side-length 200 
pixels (10  mm) are shown in Fig.  2. Each patch is color 
coded according to the highest probability (most likely 
artist), with the opacity of the shading proportional to 
the magnitude of that probability (i.e., more transparent 
shadings correspond to more uncertain attributions). 
Out of 180 patches for each artist in the test painting, we 
found 12, 0, 2, and 14 patches attributed incorrectly for 
artists 1 through 4, representing an overall accuracy of 
96.1%. This is remarkable as 25% accuracy is expected by 
random choice. Further, we find that most of the patches 
were attributed with high confidence (more opaque shad-
ing) for all four artists. The accuracy of ML prediction 
from the height data is remarkable, particularly given the 
similarity of the patches in terms of features distinguish-
able to the human eye (Fig. 1B), as well as its success in 
broad monochrome areas of the painted background.

Exploring the effect of patch size on attribution accuracy
The surprisingly accurate attribution of 10  mm patches 
leads to a natural question: how does the size of the 
patch affect the machine’s ability to properly attribute? 
In other words, can we make the patch size smaller than 
10  mm and still reliably attribute the hand? Fig.  3 pre-
sents results for networks trained on patches with differ-
ent side-lengths ranging from 10 pixels (0.5 mm) to 1200 
pixels (60  mm). The predictions are quantified in terms 
of overall accuracy for all four artists (solid thick curve) 

and individual artist  F1 score (thin colored curves). We 
also calculated precision and recall; results are shown in 
Additional file 1: Fig. S3. To check the self-consistency of 
the predictions, we conducted repeat training/testing tri-
als at each patch size (details in the Additional file 1). The 
data points and error bars in Fig.  3 represent the mean 
and standard deviation for those trials.

The accuracy exhibits a broad plateau around 95% 
for patches between 100 and 300 pixels (5 and 15 mm). 
Below 100 pixels there is a gradual drop-off in accuracy, 
as each individual patch contains fewer of the distinctive 
features that facilitate attribution. The  F1 scores allow us 
to separate out the network performance for each art-
ist. Consistent with the results in Fig. 2, the attribution is 
generally better for artists 2 and 3 versus 1 and 4 across 
patch sizes less than 300 pixels (15 mm). Nonetheless, the 
 F1 scores for all artists are above 90% near the optimal 
patch size (around 200 pixels or 10 mm).

On the other end of the patch size spectrum, the ML 
approach faces a different challenge. The size of training 
sets becomes quite small, even though each individual 
patch contains many informative features. The single-
network accuracy drops off quickly for patch sizes above 
300 (15 mm) pixels, decreasing to about 75% at the larg-
est sizes.

Predictions using single‑pixel information versus spatial 
correlations
One of the hallmarks of CNNs is their ability to harness 
spatial correlations at various scales in an input image in 
order to make a prediction. However, there is also infor-
mation present at the single pixel level since each artist’s 
height data will have a characteristic distribution rela-
tive to the mean. The probability densities for these dis-
tributions are shown in Fig.  4, calculated from the two 
paintings in the training sets of each artist. The height 
distributions are all single-peaked and similar in width, 
except for Artist 1, who exhibits a broader tail at heights 
below the mean than the others. In order to determine 
how important spatial correlations are, we can compare 
the CNN results to an alternative attribution method that 
is blind to the correlations: maximum likelihood estima-
tion (MLE). For a given patch in the testing set, we cal-
culate the total likelihood for the height values of every 
pixel in the patch belonging to each of the four distribu-
tions in Fig. 4. Attribution of the patch is assigned to the 
artist with the highest likelihood. The predictive accu-
racy of the MLE approach versus patch size is shown as 
a dashed line in Fig.  3. We expect MLE to perform the 
best at the largest patch sizes, since each patch then gives 
a larger sampling of the height distribution, and hence is 
easier to assign. Indeed, at the patch size of 1200 pixels 
(60 mm), representing nearly a fifth of the area of a single 
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painting, the MLE accuracy approaches 70%, comparable 
to the CNN accuracy. In this limit the size of the train-
ing set is likely too small for the CNN to effectively learn 
correlation features. As the patch size decreases, the gap 
between the CNN and MLE performance grows dramati-
cally. In the range of 100–300 pixels (5–15  mm) where 

the CNN performs optimally (~ 95%), the MLE accuracy 
is only around 40%. These small patches are an insuffi-
cient sample of the distribution to make accurate attri-
butions based on single pixel height data alone. Clearly 
the CNN is taking advantage of spatial correlations in 
the surface heights. This leads to a natural next question: 

Fig. 2 Each artist (artists 1–4) created three paintings, one of which was reserved for testing the trained ML algorithm. These test paintings are 
shown for all four artists as A high-resolution photographs (all paintings used in the study are presented in Additional file 1: Fig. S1), B height data, 
shaded in grayscale from low (darker) to high (lighter). C Attribution results of the ensemble ML predictions on height data. Color shadings are 
overlayed on the grayscale image from row B corresponding to the most likely artist for each patch of side-length 200 pixels (10 mm; 1: red, 2: 
orange, 3: green, 4: blue). More opaque shades of color indicate greater predictive confidence (larger attribution probabilities). The overall accuracy 
of the patch attribution is 96.1%
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what correlation length scales are involved in the attribu-
tion decision?

Using empirical mode decomposition to determine 
the length‑scales of the brushstroke topography
In order to examine the spatial frequency (length) 
scales most important in the ML analysis, we employed 
a preprocessing technique used historically in time-
series signal analysis called empirical mode decompo-
sition (EMD) [17], which has recently been extended 
into the spatial domain [18–20]. Its versatility is derived 

from its data-driven methodology, relying on unbiased 
techniques for filtering data into intrinsic mode func-
tions (IMFs) that characterize the signal’s innate fre-
quency composition [21]. In our case, we have used a 
bi-directional multivariate EMD [22] to split our 3D 
reconstruction of each painting’s complex surface 
structure into IMFs that characterize the various spatial 
scales present.

The first IMF contains the smallest length scale tex-
tures, and subsequent IMFs contain larger and larger fea-
tures until the sifting procedure is halted and a residual is 
all that remains. This process is lossless in the sense that 
by adding each IMF and the resulting residual together, 
the entire signal is preserved [17, 21]. It is also unbi-
ased in the sense that when compared to standard Fou-
rier analysis techniques, there are no spatial frequency 
boundaries to define, and no edge effects introduced 
from defining those boundaries.

By investigating each series of IMFs individually, we 
can estimate the length scale for each as follows. We use 
a standard 2D fast-Fourier transform on the IMF and cal-
culate a weighted average frequency for the modes. The 
length scale is the inverse of the average frequency and 
is plotted versus IMF number in Fig. 5B. Among the four 
artists, the typical scale increases from about 0.2 mm for 
IMF 1 to 0.8  mm for IMF 5. Figure  5A shows a sample 
patch and the corresponding IMFs, which illustrates the 
progressive coarsening for the higher numbered IMFs. 
To see how the length scale affects the attribution results, 
we repeated the CNN training using each IMF sepa-
rately, rather than the height data. The resulting mean 
accuracies for each IMF using three different patch sizes 
are shown in Fig.  5C. Individual IMFs are by construc-
tion less informative than the full height data (which is a 
sum of all the IMFs), and hence we do not reach the 95% 
level of accuracy seen in the earlier CNN results. How-
ever, IMFs 1 and 2 (the smallest length scales) achieve 
accuracies of above 80% at patch size 10  mm (200 pix-
els). There is a drop-off in accuracy as we go to larger 
patch sizes (IMFs 3–5), indicating that the salient infor-
mation used for attribution is present at length scales of 
0.2–0.4 mm. These are comparable to the dimensions of 
a single bristle in the types of brushes used by the artists, 
which were 0.25 and 0.65 mm respectively, as shown as 
dashed lines in Fig. 5B. This strongly suggests that the key 
to this attribution using height data lies at scales that are 
small enough to reflect the unintended (physiological) 
style of the artist. This result is consistent with the scale-
dependent ML results depicted Fig. 3, which indicate that 
below a patch size of 5 mm, all accuracies are well-above 
that expected for random attribution (25%). Remarkably, 
even at the scale of 0.5 mm, that is, the scale of 1–2 bris-
tle widths, ML was able to attribute to 60% accuracy.

Fig. 3 Patch size versus two measures of ML performance: overall 
accuracy (thick black curve) and  F1 scores for each artist (thin colored 
curves). The best results occur for patches in the range 100–300 
pixels (~ 5–15 mm). The overall accuracy decreases when patch size 
is smaller than 100 pixels (due to lack of information in each patch) 
and when patch size is larger than 300 pixels (because the size of the 
training data set decreases with increasing patch size). Error bars are 
standard deviations over different repetitions of ensemble training. 
For comparison, the maximum likelihood estimation (MLE) accuracy 
results based on the pixel height distributions are shown as a dashed 
curve

Fig. 4 Distributions of heights relative to the mean for each artist
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Comparing topography versus photography when testing 
on data with novel characteristics
Image recognition by ML is most often performed on 
photographic images of the subject depicted by arrays 
corresponding to the RGB channels of the entire image. 
The aim of this test is to determine how well CNNs per-
form at attributing the patches of the images depicted in 
row A of Fig. 2 as compared to the profilometry data. We 
were particularly interested in how well ML of the two 
types of data—photo and height-based—would perform 
if the testing set had novel colors and subject matter, 
absent in the training set. This approach better approxi-
mates the challenges of real-world attribution, where 

we would not necessarily have extensive well-attributed 
training data matching the palette and content of the 
regions of interest in a painting where the algorithm 
would be applied. To generate qualitatively distinct train-
ing and testing sets, we divided each painting into patches 
of side-length 100 pixels (5  mm) and then sorted the 
patches into three categories: background, foreground, 
and border depending on the color composition of each 
patch (see Fig. 6A for an example). Among our training 
set, 25% of the patches are assigned to background, 50% 
count as foreground, and the remaining 25% are border 
patches (Fig. 6B). The latter include regions of both back-
ground and foreground and were excluded from both 
training and testing to make it more challenging for the 
algorithm to generalize from one category to the other. 
The mostly dark green and black color palette and lack 
of defined subjects in the background distinguishes it 
from the foreground, which is dominated by the painted 
flower, with various shades of yellows and reds. Could a 
network trained on only background patches still accu-
rately attribute foreground patches, or vice versa? The 
mean accuracy results are shown Fig.  6C, with the left 
two bars corresponding to training on the background, 
testing on the foreground, and the right two bars to the 
reverse scenario. Because the training sets are signifi-
cantly smaller (and less representative of the test sets) 
than in our earlier analysis, we expect lower attribution 
accuracies. Despite this, networks trained on the height 
data (blue bars) perform reasonably well, achieving 60% 
accuracy when trained on background, and 80% when 
trained on foreground. (We note that the background 
training set is about half the size of the foreground one). 
In contrast, networks trained on the photo data did sig-
nificantly worse (red bars), achieving 27% and 43% accu-
racies, respectively. Clearly, in this context the color and 
subject information in the photo data, which was likely 
the focus of the ML training, was a hindrance, since the 
test set confronted the network with novel colors and 
subject matter. In contrast, there is a significant, small-
scale, stylistic component that is captured in the height 
data that is present whether the artist is painting the fore-
ground or background, which is therefore harnessed for 
attribution.

Conclusions
We have described a controlled experiment using 
ML methods coupled with optical profilometry data 
to attribute painted works of art based on the topo-
graphical structure indicative of the artists’ style as a 
tool for art connoisseurship. By dividing the paintings 
into patches significantly smaller than the painting, we 
have removed subject information as well as aspects 
of the artist’s intended style. We are thereby able to 

Fig. 5 A A sample patch of side-length 80 pixels (4 mm) and the 
corresponding first five IMFs calculated using empirical mode 
decomposition. B The characteristic length scale of the features in 
each IMF for each artist. C Mean accuracy of attribution when the 
network is trained on each IMF alone, rather than the original height 
data. Results are shown for three different patch sizes: 80 pixels 
(4 mm), 200 pixels (10 mm), and 500 pixels (25 mm)
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focus our study onto attribution using only unintended 
style components. We found outstanding attribution 
accuracy of over 90%, in the best cases, using ensem-
ble CNNs, and further, provided evidence using EMD 
alongside ML, that the smallest length scales, compa-
rable to a small number of bristles, are most telling for 
the ML attribution process. This result suggests that 
our techniques are complementary to expert connois-
seurship, which focus on longer length scales. Thus, 
surface topography expands the toolbox for attribution, 
conservation, forgery detection and cultural heritage 
preservation. Additionally, we found that profilometry 
data provides higher attribution accuracy than using 
photographs when the subject and color palettes of 
the training and testing data are significantly different. 
Our virtual patch analysis is appropriate for attributing 
workshop paintings. In our planned application to real-
world workshop paintings, however, the toll of inter-
vening years and conservation measures will challenge 
our techniques. Finally, given the fine height resolution 
of optical scanners, these methods may find application 
in other media.

Materials and methods
Experimental design summary
This study was designed to assess the potential usefulness 
of surface topography in the attribution of paintings. Sets 
of triplicate paintings were individually created by nine 
artists, all using the same tools, materials, and subject. 
The surface topographical information for each painting 
was recorded using optical profilometry. Then, ML tech-
nology was developed to attribute small square patches 
of the painting’s topography to the artist who painted 
them. Lastly, data filtering software was used to separate 
the height data into IMFs, based on spatial frequency, to 
determine the length scales of interest. In this way, we 
demonstrate the usefulness of topographical informa-
tion to attributing paintings, and further investigate the 
method.

Materials
The paintings were prepared using Winsor & Newton 
Winton Oil Colors: Titanium White, Cadmium Red, 
Cadmium Yellow, French Ultramarine, and Burnt Umber 
(Blick), Utrecht Linseed Oil (Blick), on cut canvas paper 

Fig. 6 A Example of a painting divided into background, foreground, and border (mixed background and foreground) patches of size 100 × 100 
pixels (5 × 5 mm). B Distribution of the three classes across all patches in the training set. C Results from training on background patches, testing on 
foreground patches and vice versa using both height data and high-resolution photo data
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from a Canson Foundation Canva-Paper Pad (Blick). 
The paint was applied with a classroom set of off-the-
shelf, Blick Scholastic Wonder White paintbrushes (sizes: 
Bright 8, Bright 4, Round 4), which were used at the art-
ist’s discretion.

Preparation of the paintings
In preparation for the OP measurements, the paintings 
were adhered to plexiglass donated by the Cleveland 
Museum of Art, using 3 M Super 77 Multipurpose Spray 
Adhesive. This was done to ensure the entire 12 × 15 cm 
region of the painting stays within the 1.1  cm focal 
range of the optical profilometer for the duration of the 
measurement.

Profilometry
A NANOVEA ST400 Optical Profilometer was used 
to create a detailed height map of the surface using the 
Chromatic Light technique.  Measurements were taken 
over an area of 12 by 15 cm with 50 μm spatial resolution. 
Specifications for the P5 pen used for the measurement 
include a lateral resolution of 11  µm, a 10  mm z-range, 
and a height repeatability of 200  nm within that range. 
Three thousand and one 12  mm line scans were made 
across the samples, separated by 50  µm in the y-direc-
tion. Measurements were aligned to the center of the 
painting, so a favorable ratio of subject and background 
could be collected.

Data preparation
As an initial preprocessing step to remove large scale 
height variations due to the curvature of the canvas, we 
estimated the canvas profile by applying a mean filter of 
radius 100 pixels to the height data. The resulting profile 
was subtracted from the raw height data. These relative 
height values were then mapped so that the range from 
− 200 to 300 microns corresponds to the grayscale range 
0–1. The values were copied three times to make three 
identical channels in a 16-bit PNG image file, to meet the 
three-channel requirement of VGG-16. When we used 
CNN to analyze individual IMFs, we also copied each 
individual IMF three times. Then we divided each paint-
ing into patches of various sizes ranging from 0.5 mm (10 
pixels) to 60  mm (1200 pixels). We preprocessed each 
patch by subtracting the mean RGB values (103.939, 
116.779, 123.68), which were computed on all the train-
ing images in the ImageNet database, from each pixel. 
The default input size for VGG-16 was 224 pixels × 224 
pixels; we then resized all the patches to match this size.

Each artist created three paintings; one was chosen 
from each artist as the test painting, and the other two as 
training/validation paintings, with the ratio of the num-
ber of training and validation patches as 9:1. To examine 

how this choice of test versus training/validation paint-
ings affects the network performance, we also looked at 
variations: out of the 81 possible combinations, we ran-
domly selected 10 and provide the results in Additional 
file 1: Fig. S4. At the optimal patch size of 200 pixels, the 
average performance is over 90%, comparable to the main 
text results.

CNN architecture
To perform transfer learning, we removed the three fully 
connected layers at the top of the pretrained VGG-16 
network to get the base model. The convolutional base 
functions as a feature extractor and learns spatial hier-
archies of input images. We then added a new average 
pooling layer (performed over a 2 × 2 pixel window, with 
stride 2), followed by a flatten layer with 25% dropout. 
Next is a fully connected layer with 25% dropout, where 
we used a ReLU (rectified linear unit) activation function 
and applied an L2 regularization penalty with regulari-
zation factor 0.001. The final layer was a soft-max layer 
that performs 4-artist classification. The overall network 
architecture is shown in Additional file  1: Fig. S2. We 
used Adam as the optimizer. The learning rate was set to 
0.001 and 0.0001 depending on the training phase.

During training, we first randomly initialized the net-
work weights by training the model for 25 epochs with 
learning rate 0.001 and batch size 32 and saved the model 
with highest accuracy from this phase of training. Then 
we unfroze the last two blocks of the VGG-16 base to fine 
tune the weights. During this phase of training, we used 
a slower learning rate of 0.0001 and trained the network 
for 25 epochs with batch size 32.

Calculating ensemble accuracy and  F1 scores
After training, the network outputs a vector of four prob-
abilities for each patch, corresponding to the likelihood 
of attribution to one of the four artists in the experi-
ment. We created ensembles of 10–20 different trained 
networks depending on the patch size (more informa-
tion in Additional file 1) and calculated the mean prob-
ability vector, which we used to predict which patch is 
painted by which artist. After making predictions of all 
the patches on the testing painting, we calculated the 
overall accuracy and  F1 scores for each artist. To calcu-
late the overall accuracy, we counted the number of cor-
rectly labeled patches and divided it by the total number 
of testing patches. For each individual artist, we counted 
the number of true positives (TP), false positives (FP), 
false negatives (FN), and calculated the  F1 scores accord-
ing to F1=TP/[TP + 1/2(FP + FN)]. Additionally, we also 
calculated precision and recall for each artist. Precision 
measures the proportion of patches attributed to artist X 
that are actually from artist X; it is defined as Precision  = 
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TP/(TP+FP). Recall, on the other hand, measures the 
proportion of patches that are from artist X that are cor-
rectly attributed to artist X; we calculated it according to 
Recall  = TP/(TP+FP).

Attribution based on maximum likelihood estimation 
(MLE)
To understand the role of spatial correlations in attri-
bution accuracy, we also employed an MLE approach 
where these correlations are ignored. To implement this 
method, we first did kernel density estimation (using Sil-
verman’s rule for bandwidth [23] to obtain probability 
density functions Pi(z) for the single-pixel heights z rel-
ative to the mean for each of the four artists, i  =  1, … 
4. These estimates, shown in Fig. 4, were based on com-
bined data from the two paintings in the training set for 
each artist. For a given test patch, the log-likelihood that 
the jth pixel’s height value, zj, belongs to the distribution 
of artist i is: log Pi(zj). The overall log-likelihood that all 
pixels in the patch belong to artist i is: Li = Σj log Pi(zj), 
where the sum runs over all height values in the patch. 
MLE assigns the attribution of the patch to the artist i 
who has the largest Li value. The resulting mean accura-
cies are shown as a dashed line in Fig. 3.
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