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ABSTRACT: The design of metamaterials which support unique
optical responses is the basis for most thin-film nanophotonic
applications. In practice, this inverse design (ID) problem can be
difficult to solve systematically due to the large design parameter
space associated with general multilayered systems. We apply
convolutional neural networks, a subset of deep machine learning,
as a tool to solve this ID problem for metamaterials composed of
stacks of thin films. We demonstrate the remarkable ability of
neural networks to probe the large global design space (up to 1012

possible parameter combinations) and resolve all relationships
between the metamaterial structure and corresponding ellipsometric and reflectance/transmittance spectra. The applicability of the
approach is further expanded to include the ID of synthetic engineered spectra in general design scenarios. Furthermore, this
approach is compared with traditional optimization methods. We find an increase in the relative optimization efficiency of the
networks with the increase in the total layer number, revealing the advantage of the machine learning approach in many-layered
systems where traditional methods become impractical.
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Nanostructured metamaterials have become ubiquitous in
modern photonics, providing a platform for engineered

control over light−matter interaction. Metamaterials operate by
modifying the subwavelength spatial distribution of materials in
a deliberate pattern, creating optical responses which go beyond
those found in natural materials.1−3 In particular, thin-film
metamaterials, metamaterials with varied material composition
restricted to a single axis, have garnered widespread attention in
the photonics community and are commonly utilized in
applications such as optical coatings and sensors.4,5

The engineered design of metamaterials sustaining a desired
optical response in a given spectral range, termed inverse design
(ID), is the basis for most optical applications. Successful
metamaterial design requires the exploration of the global
material parameter space to engineer an optimized re-
sponse.6−10 This approach is a counter to traditional electro-
magnetic simulation methods, where electromagnetic theory is
applied to calculate the spectral response of a known material
structure.11 This presents a major problem for nanophotonic ID
because in general, analytic methods to calculate material
structures from a given spectral response are not known.
Furthermore, the underlying correlations between spectra and
structure are often complex and are difficult to generalize for
systems with many independent layers of different materials.
Deep neural networks have been previously implemented as a

tool for photonic ID.12−14 Machine learning-based approaches
to photonic ID are typically proposed to replace traditional
gradient-based methods, which can often be computationally

expensive to implement. The capabilities of deep neural
networks result from their ability to learn complex patterns by
generalizing large quantities of data through the training of a
large number of internal weight parameters.15 These networks
have shown the remarkable ability to solve the ID problem
accurately and efficiently in specific nanophotonic systems such
as thin-films,10,16−20 2D metasurfaces,21−28 and core−shell
nanoparticles,8,29,30 within a limited parameter space. Further-
more, neural network models have been implemented to replace
the typical forward electromagnetic methods used to simulate
optical systems.8,31 In these studies, significant advances in
solution time have been demonstrated with respect to traditional
simulation methods.
Machine learning approaches to solve the photonic ID

problem can come in a variety of types: deep neural
networks,8 ,10 ,27 ,29,31 convolutional neural networks
(CNN),16,32−35 and generative models,23,28 among others.
Furthermore, machine learning methods have been applied for
ID to predict both continuous and discrete photonic design
parameters.36
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CNNs are a subset of deep neural networks which utilize
convolutional layers to assess aspects of an input signal.37−39

This approach uses local connectivity in the convolutional
layers, whereby the input characteristics are evaluated in an
internal representation space, allowing interpretation of spectral
features by their relative proximity. The stacking of subsequent
layers forms filters which allows for evaluation of an input signal
on both local and global scales. The convolutional approach
allows for greater generalization ability and predictive accuracy
in a wide range of computational tasks when compared to
traditional deep neural network methods.40,41

In this work, we apply CNNs to the ID of an important class of
metamaterialplanar multilayer stacks where each individual
film is much thinner than the wavelength of incident light.
CNNs have been successfully applied to other specific photonic
ID problems;32−35 however, these problems are typically within
a relatively constrained set of possible structures. Here, we
explore the utility of CNNs from a more general perspective,
expanding upon these previous works by applying CNN
techniques to a larger and more general library of available
materials and ranges of layer thicknesses, effectively searching a
combinatorially large global design space (up to ∼1012 possible
parameter combinations). This library does not make use of any
particular design schema (i.e., periodic photonic crystal
structures) in predicting the photonic response, including all
combinations of materials and thicknesses for each independent
layer in the stack. This makes the implementation more similar
to the true ID of a general forward simulation method.
The overarching goal of the ID problem is to predict sets of

structural parameters that achieve certain design targets. In this
regard, we consider the structure−spectral correspondence in
terms of both the reflectance/transmittance and ellipsometric
spectral responses. Depending on the target and the desired
output, the general ID problem can be broken down into several
individual subproblems, illustrating the interrelationships
between a typical structure and multiple spectral representa-
tions. We show that each of these problems, including the ID of
photonic structures from both reflectance/transmittance and
ellipsometric structures, respectively, and the conversion

between independent spectral types, can be solved by
implementing an independently trained CNN model. We
describe these in detail in the next section.

■ RESULTS AND DISCUSSION
Structure of the ID Problem.We conceive the ID problem

as threefold, as shown in Figure 1a. All relationships between the
three representations of thin-film metamaterialsmaterial
structure, ellipsometric spectra, and reflectance/transmittance
spectraconsist of interconnected design problems. We seek to
fully explore the ID problem for a given metamaterial structure
by elucidating all relationships between the representations.
Most thin-film optical engineering is represented by the

structure ID problem, determining a specific stack of material
layers which produces a particular spectral response. This
involves determining the composition and thickness of each
layer, and the ordering of the layers in the stack. In particular,
most practical applications of metamaterials involve the
structure ID of reflectance (R)/transmittance (T) spectra (left
upward arrow in the Figure 1a triangle). We design CNNs to
take all R and T spectra for both polarizations of incident light
(Rp,Rs,Tp, andTs) at [25, 45, and 65] degree incident angles and
output individual layer parameters (material and thickness). The
range of incident angles used in the training can be easily
adapted for specific applications.
Ellipsometry, another method of spectral analysis, provides

optical information about metamaterial structure and composite
materials by taking into account the phase relations in the
polarized reflected light.42 Ellipsometry is a standard exper-
imental method in nanophotonics, yielding two spectral
variables (Ψ and Δ). Ψ relates to the ratio in the magnitude
of the p- and s-polarized reflectance Fresnel coefficients, whileΔ
relates to the phase shift between the same coefficients, where

r

r
etan( ) ip

s
= Ψ Δ

(1)

The analysis of metamaterials based on structure ID ofΨ and
Δ spectra is the primary purpose of most commercial
ellipsometry software. However, the traditional methods of

Figure 1. Illustration of the full ID problem and convolutional neural network solution. (a) The ID triangle for optical metamaterials consists of
reflectance/transmittance spectra, ellipsometry spectra, and metamaterial structure. CNN-based ID legs for metamaterial structure (structure ID) and
spectral response (spectral ID) are shown in orange, while the completely determined transfer matrix legs are shown in green. (b) Pictorial
representation of the CNN network structure in the reflectance/transmittance structure ID problem.
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model fitting employed can be difficult due to generally
requiring detailed prerequisite knowledge about the target
structure including layer thicknesses and composite materials. In
contrast, our CNN-based ellipsometric structure ID (right
upward arrow in the Figure 1a triangle) attempts to solve this
problem without such constraints, with a search occurring over
the entire global design space. The designed CNN takes as input
Ψ and Δ spectra at [25, 45, and 65] degree incident angles and
outputs individual layer parameters. Note that the reverse of the
structure ID problem left/right downward arrows in the Figure
1a triangle is generally straightforward: if the system structure is
completely known, both ellipsometry and reflectance/trans-
mittance spectra are completely determined and can be easily
calculated with the transfer matrix method.43

Finally, the third leg of the ID problem is the ability to
reconstruct all ellipsometry spectra (Ψ and Δ) from the
complete reflectance/transmittance spectra (Rp, Rs, Tp, and Ts),
and vice versa for nanophotonic structures residing in the design
space (bottom arrows in the Figure 1a triangle). This spectral ID
problem is nontrivial because it requires the reconstruction of
phase or transmittance data, respectively, and can in principle be
degenerate (multiple possible solutions in our global design
space) without detailed knowledge of the underlying system
structure. Despite these complexities, we show that with these
CNNs, we can tackle this aspect of the problem as well.
Throughout the text, we will be using the terminology

introduced herestructure ID for the upward arrows in the
triangle, whose output is material structure, and spectral ID for
the bottom arrows, where the output is a certain optical
spectrumto describe the different CNNs we developed. To
define a concrete design space, we trained our CNNs on sample
data from thin-film metamaterials of one−five layers, with layer
thicknesses from 1 to 60 nm and with a set of possible materials:
Ag, Al2O3, ITO, Au, and TiO2 (full details of the training, as well
as the network structure of the CNNs, can be found in
Methods.) We treat the training/testing of each total layer
number (1−5) subspace as a separate problem, so there is a
different network trained for each layer number. Excluding

degenerate cases where consecutive layers are the same material,
the design space amounts to ∼1012 possible parameter
combinations for the most complex case (for five layers, with
thickness at 1 nm resolution, see the Supporting Information for
more discussion on the design parameter space). However the
approach we present is not limited to this particular range of
structural parameters and choice of material library. The training
can readily be adapted to a different design space depending on
the specific photonic problems of interest by altering the training
data set.

Prediction of Material Spectral Response. There are
multiple ways of evaluating the effectiveness of structure and
spectral ID CNNs. As a first step, we focus on the calculated
spectral response from the network output structural
predictions. In the case of the structure ID CNNs, whose
output is a set of structural parameters (layer thicknesses,
compositions), the calculated spectral response consists of the
reflectance/transmission or ellipsometric (Ψ and Δ) spectra of
the output structure, calculated using the transfer matrix
method. These spectra can be compared to the input spectra
that were design targets and a root mean squared error (RMSE)
calculated over the spectral range of interest (450−950 nm) and
for all angles([25, 45, and 65] degrees).We refer to this metric as
the spectral RMSE, coming in two types (reflectance/trans-
mittance [unit-less] or ellipsometric [deg]) depending on the
spectral type used. For the case of the spectral ID problem, we
can also formulate a spectral RMSE metric by comparing the
output of the network (which in this case is directly a spectrum)
to the ground truth from the system producing the input
spectrum. All the evaluation results in this section and the
subsequent ones are based on a testing set of systems consisting
of previously unseen examples, drawn from the same design
space as the training set (see Methods for details).
Spectral RMSE is in many cases the most practical measure of

ID performance, particularly in situations with degenerate
solutionsdifferent structural parameters that produce similar
spectra. For example, the target spectrum in the testing set may
have been produced by a certain structure, but the network can

Figure 2. Performance metrics for the ID CNNs. (a−c) Performance of the structure ID CNNs for both ellipsometry spectra (blue) and reflectance/
transmittance spectra (red) as a function of total layer number. Networks are evaluated from an independent test data set. Specific metrics are shown:
(a) spectral RMSE between the input spectra and spectral response of the output structure averaged between all distinct spectral subtypes
[ellipsometric structure ID (Ψ and Δ)(deg) and reflectance/transmittance structure ID (Rp, Rs, Tp, and Ts) (unit-less)], (b) average layer thickness
RMSE [nm], and (c) average layer material accuracy [%]. (d−e) Network performance for spectral ID in the design of both (d) ellipsometric spectra
from reflectance/transmittance spectra (Ψ and Δ output [deg]) and (e) reflectance/transmittance spectra from ellipsometric spectra (Rp, Rs, Tp, and
Ts output [unit-less]) spectra as a function of total layer number.
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find an alternative structure (different materials, different
thicknesses) that yields a closely matching spectrum (and
hence small spectral RMSE). This would still be a valid solution
of the ID problem, fulfilling the intended spectral design task;
however, the predicted structure does not match the target
design structure. Ideally, we would like to minimize the spectral
RMSE, while matching the target design structure. Balancing
these two imperatives is a goal of our approach.
The average spectral RMSEs in the structure ID problem for

both ellipsometric and reflectance/transmittance spectra are
shown in Figure 2a, evaluated over an independent test data set.
To understand the scale of the spectral RMSEs, note that the
total output range for reflectance (R) and transmittance (T) is
from 0 to 1, and for the ellipsometric variables (Ψ and Δ), this
range is from 0 to 90° and 0 to 360°, respectively. For
reflectance/transmittance spectra, observed spectral RMSE is
low (less than 1% of the total spectral output range) and
increases with the increase in total layer number to a maximum
of 13% of the output range for four-layered systems.
Ellipsometric spectral RMSE is observed to decrease with the
increase in total layer number from 3% of the spectral output
range to 2% for one- and five-layered systems, respectively.
Tolerances for acceptable spectral RMSE are necessarily
application-dependent; however, we consider these results
good, especially for the systems with fewer layers. Notably, the
effectiveness of the CNNs extends even to systems with many
layers, where the design space is far larger. This is all the more
remarkable because spectral RMSE is not used directly as a part
of the loss function for CNN training (seeMethods for details of
the loss function), and hence, the performance in this regard is a
byproduct rather than an explicit goal of the training process.
This is an important feature of our implementation of the CNN
methods because we consider the training of networks to predict
the underlying structure a major goal. This overcomes a
deficiency in some traditional methods which solely minimize
the spectral RMSE in the optimization loss because these
methods can be especially prone to encountering degeneracy
within the design space. This can lead to solutions which locally

minimize the spectral RMSE, but do not typically select the
correct structure.
Spectral RMSE results for the spectral ID CNNs are shown in

Figure 2d,e as a function of the total layer number. For both
spectral ID problems, the spectral RMSE is observed to increase
with the increase in total layer number. This increase is expected
with the exponentially increasing size of the parameter space;
however, the CNN responses maintain a low RMSE even for
relatively high total layer number systems. The maximum
average spectral RMSE occurs for five-layer systems with 0.1 and
1% of the total output range for ellipsometric [deg] and
reflectance/transmittance [unit-less] spectral types, respec-
tively. This result demonstrates the ability of CNN models to
accurately correlate spectral types for general classes of real
systems. This result is impressive because general relationships
between reflectance/transmittance and ellipsometric spectra are
not well defined analytically. It is notable that the CNN models
perform comparably for both p and s polarization in trans-
mittance. This is explained by relatively low transmittance for
most systems above three layers, given that an average layer
thickness of 30 nm and three layers significantly increases the
probability of optically opaque structures.
We note that training a network to solve the spectral ID

problem directly (correlating between the two distinct spectral
types, following the bottom right arrow of the triangle) performs
better than the indirect approach of first solving the structure ID
problem from R, T to material parameters and then using the
transfer matrix to get the Ψ, Δ spectra (structure ID spectral
RMSE, the alternative path of following the left upward and right
downward arrows). Comparing Figure 2a,e, the spectral RMSEs
are typically an order of magnitude better for the direct path.
This underlines the importance of having separate trained
networks for all three legs of the ID triangle. Even though
spectral ID yields smaller spectral RMSE values, in many design
applications, structure ID is essential because we desire to
explicitly predict the material parameters. We explore this point
further in the next section.

Prediction of Material Structure Parameters. For the
case of structure ID, because the network output consists of

Figure 3. Examples of CNN ID for structures within the training parameter space. ID of (a−c) ground truth structure 1 shown in (c) and (d−f) ground
truth structure 2 shown in (f). Structures are drawn to scale with material colors in the figure legend. Simulated spectra (black) are plotted against
structure ID (blue) and spectral ID (red) CNN prediction results. (a) Ellipsometry ID of structure 1, predicted structure is shown in the inset. (b)
Reflectance/transmittance ID of structure 1, and the predicted structure is shown in the inset. (d) Ellipsometry ID of structure 2, and the predicted
structure is shown in the inset. (e) Reflectance/transmittance ID of structure 2, and the predicted structure is shown in the inset.
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structural/material parameters, we can use these to formulate an
alternative measure of CNN performance: how well does the
network predict the correct material in each layer, and how well
does it predict each layer thickness? These metrics are imperfect
in the sense that by construction, the predictive accuracy should
tend to decrease as the layer number increases. This is because
for larger layer numbers, there may be many degenerate
structures with a similar optical response. However, it is still
interesting to measure the impact of this degeneracy issue on
predictive performance. The results are shown in Figure 2b,c, as
a function of total layer number. In both reflectance/
transmittance and ellipsometric structure ID, trained CNN
models are able to reproduce the correct materials and thickness
for the corresponding input spectra with high precision (>90%
materials accuracy, <1 nm thickness RMSE) in up to three total
layers, averaged over the entire test data set (see the Supporting
Information for more details on the network response to test
data). For systems with higher total layer number, the CNN
models are still able predict structures with significantly correct
materials and thicknesses. However, a decrease is observed in
the material accuracy and consequently an increase in thickness
RMSE for large total layer number systems. This decrease is
attributed both to construction: the expected increase in
degeneracy for much larger parameter spaces; and to network
performance: a decreased ability of the CNN to generalize the
greater complexity of higher-order systems. In general, this vast
increase in parameter space greatly increases the demand upon
the CNN for generalization of the spectral response.
The comparison with spectral RMSE is instructive: as seen in

Figure 2a, reflectance/transmittance spectral RMSE increases by
0.11 and ellipsometric spectral RMSE decreases by 1.57°, with
the decrease in average layer material accuracy and increase in
average layer thickness RMSE. The comparison of these two
metrics is an indication of degeneracy within the included
parameter space because the CNN can more often come to
predictions with a similar spectral response while utilizing

physical structures with less correspondence to the target
structure.

ID of In-Library Structures. Two examples of structure ID
and spectral ID performed with CNNs are shown in Figure 3,
plotted against the corresponding input spectra. Both the target
design structure and ID structures are shown. Spectral
comparisons are computed by operating directly with the
transfer matrix code on the CNN structure output. In each case,
both the ellipsometric and reflectance/transmittance CNNs
predict a structure which reproduces the spectral response to a
high degree of accuracy. Remarkably, the CNN model is able to
predict spectral response irrespective of sharp local features in
the input spectra, as can be seen for both the relatively sharp and
broad features (see the Supporting Information for more
discussion on this point). This feature of the CNN prediction is
not equally represented in the spectral RMSE metric and is
affected by both the CNN feature extraction approach and an
operation on a limited library of materials.
An example three-layer system is shown in Figure 3a−c, and

the CNN model is seen to predict the correct material subspace
corresponding to the input spectra. Because of this, any error in
the spectral response is then a result of fine-tuning individual
layer thicknesses to optimize the spectra. For the five-layer
system shown in Figure 3d−f, the CNN does not predict the
correct material subspace for the ground truth structure.
However, for both ellipsometric and reflectance/transmittance
spectra, spectral response of the chosen structure closely
matches that of the target spectra to within 0.1° and 2% R/T
maximum error, respectively. This is an interesting property of
the CNN-based ID, that incorrect structures are often predicted
which still produce a spectral response that closely mimics the
target spectra. The existence of such structures is a known result
of the spectral degeneracy for many layered systems,
compounded by the finite CNN accuracy, as discussed
above.10 However, the solution types shown in Figure 3d−f
reside in material subspaces which have been specifically
excluded from the training data set because of the repeating

Figure 4. Examples of CNN ID for structures outside the training parameter space with (a,b) for the first spectra and (c,d) for the second spectra. (a)
Drawn spectra (black) are plotted against the four-layer (blue) and five-layer (red) CNN prediction results, with predicted structures inset. Structures
are drawn to scale with material colors in the figure legend. (b) Histogram of spectral RMSE for all possible solutions to the ID problem within the
design parameter space. The CNN predicted results are shown as plotted points on the histogram for comparison. (c) Drawn spectra (black) are
plotted against the four-layer (blue) and three-layer (green) CNN prediction results, with predicted structures in the inset. (d) Histogram of spectral
RMSE for all possible solutions to the ID problem within the design parameter space.
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Au layers. This means that the CNN was not shown any
examples of this type previous to the prediction of this structure.
That the CNN can come to such solutions is a positive feature of
the ID process, indicative of generalization to a set of physically
realistic principles encoded within the CNN.
Spectral ID results for the presented systems are shown on the

same axes as the corresponding input spectra in Figure 3. In each
case, the respective spectral ID CNNs accurately predict the
corresponding spectra given the physical input. This is clear
evidence of generalization in the CNN because the underlying
relationship corresponds only to a correlation based on physical
systems and is, in principle, highly degenerate with no clear
analytic mapping between spectral types.
Creative ID of Synthetic Spectra. In practical applications

of structure ID, the desired spectral response for a multilayer
thin-film metamaterial is generally not exactly represented by a
system contained in the design parameter space probed by the
training library because it is possible to conceive arbitrary
spectral features in the target design. In these cases, CNN
structure predictions are purely a generalization of the input
spectra to similar features from the in-library parameter space, as
the CNN typically predicts outputs in this space. Two examples
are provided in Figure 4, designed to illustrate the usefulness of
this approach in practical design scenarios. The purpose of the
CNN models implemented in this study is the exploration of a
large, general parameter space. In this space, the availability of
certain spectral responses is generally limited by the finite size of
the parameter space. Thus, the correspondence of the calculated
spectral response from the network prediction with the design
target will necessarily be limited. The true measure of the
network performance is not the absolute spectral RMSE in this
case but a comparison of this value with spectral responses from
structures within the allowed parameter space, which is
discussed below.
In Figure 4a,b, the input spectra mimic a reflectance filter with

a sharp cutoff at an arbitrary cutoff wavelength. This input
spectra is not generated from any known metamaterial structure
and is simply drawn from an appropriately scaled hyperbolic
tangent function. Spectra corresponding to the predicted four-
layer and five-layer structure ID CNN predictions are shown
plotted against the drawn input spectra. In each case, spectra
from the predicted structures closely recreate the sharp edge in

the reflectance and suppressed transmittance with non-
negligible differences in the remainder of the spectra. The
inability of the CNN to completely capture the input spectra is
due to a limitation of possible structures in the design parameter
space probed by the CNN and not a deficiency in the predictive
ability of the network. This is represented in Figure 4b, showing
for each total layer number a histogram of spectral RMSE
between the input structure and all possible structures within the
design parameter space. Comparison spectra were obtained
from structures with design parameters spanning the entire
design parameter space, for a total of more than 6× 1010 and 3×
1013 structures (sampled at 0.5 nm thickness intervals) for four
and five total layer number systems, respectively. The CNN
predicted structures show a spectral RMSE in the top 95 and
90% of all possible structures for the four-layer and five-layer
systems, respectively. These results are well above median,
indicating the ability of the CNN to predict globally optimized
structures. The prediction of very low spectral RMSE solutions
is constrained by the nonexistence of exact solutions in the finite
parameter space. This is shown by the nonzero minimum in the
spectral RMSE histogram. In general, completely matching
solutions to drawn (not physically generated) spectra do not
exist within this space. Also, note that the spectral RMSE metric
does not equally represent sharp features in the target spectra to
which the CNN may have a modified response, as discussed
above. Optimization of these features is varied and can be better
evaluated on a case-to-case basis in line with the specific design
objectives.
The input spectra in Figure 4c,d are also drawn and not

generated from a physical system. These are meant to represent
a broadband antireflective coating for the glass substrate.
Spectral responses corresponding to structures predicted by
the three-layer and four-layer CNNs are shown. In each case, the
CNN predicts a structure with spectral characteristics similar to
the input, although the CNN-predicted structure is not able to
reproduce the completely flat spectral response. As discussed
above, a histogram of spectral RMSE with possible spectral
responses from all structures within the parameter space is
shown in Figure 4d. In this example, the CNN produces highly
optimized structures, with spectral RMSE in the top 98 and 99%
of all possible structures for the three-layer and four-layer
systems, respectively. The predicted structures show spectral

Figure 5. Timing comparison results for structure ID CNNs and comparable optimization techniques. (a) Ellipsometric ID solution time (s) for the
CNN (blue), least-squares optimization (red), and genetic algorithms (green) as a function of total layer number. Dashed lines indicate projected
results based on an exponential regression of observed results. (b) Similar results for reflectance/transmittance spectra ID as a function of total layer
number. (c) Complexity (purple) of the general ID problem (size of the probed parameter space, discretized by 1 nm) as a function of total layer
number. The total number of allowed material choices is also shown as number of distinct material subspaces (red). These values grow exponentially
with layer number, complicating the ID problem.
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behavior similar in magnitude to the input spectra, and
evaluation of the full space histogram shows that spectral errors
are a limitation of the design space and not of the CNN
optimization.
Notably, both of these examples feature arbitrarily engineered

spectra, in the sense that they are drawn from appropriately
scaled mathematical functions and not generated from any
physical structure. This demonstrates the usefulness of the
CNN-based structure ID in general design scenarios and the
ability of CNNs to produce globally optimized structures in a
given parameter space.
Comparison with Other Methods. In response to the

complexity of the photonic structure ID, the optimized
computational design of nanophotonic structures traditionally
relies on optimization techniques employing forward electro-
magnetic solvers.7 Generally, the performance of these tradi-
tional methods in producing globally optimal solutions is limited
by both the volume of parameter space being probed and the
efficiency of generating forward solutions. Because optical
spectra for thin-film nanophotonic systems can be generated at
relatively low computational cost via the transfer matrix method,
the comparison with traditional methods of optimization is an
important insight into the practicality of CNNs as a design tool
for general nanophotonic systems.43

Comparisons were made with least squares (Levenberg−
Marquardt)44 and genetic algorithms,45,46 two common
methods utilized in the structure ID of nanophotonic systems.
Because the general ID problem consists of a continuous basis of
individual layer thickness within discrete material subspaces, the
least-squares algorithm was globalized by performing a brute
force random global search of all material subspaces. The genetic
algorithm is able to natively accommodate the discrete basis. All
comparison algorithms were written in Python with common
modules, optimized for evaluation time and evaluated on the
same high-performance computational resources as the CNN
(see the Methods section for full details).
The observed solution times for both comparison methods

and each system total layer number are shown in Figure 5a,b,
along with the corresponding structure ID CNN solution time.
For systems with many layers, some results have been predicted
from an exponential regression of the observed solution times.
These are indicated by dashed lines in Figure 5a,b. CNN training
time has not been included in this analysis because use of the
CNN is in practice separated from training. Furthermore, the
CNNmodels can be evaluated for many systems once the initial
training has been completed, while the comparison methods
require new initialization for each system. For every total layer
number, in both structure IDs of reflectance/transmittance and
ellipsometric spectra, the CNN solution time is faster than the
comparable optimization techniques by several orders of
magnitude.
Furthermore, the trend in system solution time is toward

exponential growth with the increase in total layer number for
both of the comparison optimization techniques. The CNN
solution time remains constant within an order of magnitude
regardless of the total layer number. This trend highlights the
growing impracticality of conventional blind optimization
solutions for general nanophotonic systems with high total
layer number or high level of complexity. For five total layers, the
least-squares solution time is already 6 orders of magnitude
greater than the CNN-based optimization for both spectral
types. This analysis accounts for ID accuracy by modifying the
hyperparameters associated with each comparison method to

minimize the solution time while maintaining a layer material
accuracy and layer thickness RMSE similar to the CNN model
prediction capabilities.
The exponential increase in solution time for the traditional

optimization is a result of the increase in the total parameter
space size, as shown in Figure 5c. This is a product of the number
of material subspaces (all permutations of available material
combinations) with the allowed range of thicknesses for each
layer (counted by discretizing the space in 1 nm thickness
intervals). Although further optimizations of both methods are
potentially possible, the increasing exponential trend clearly
favors CNN efficiency when designing systems with a higher
total layer number. Globally optimal solutions require tradi-
tional optimization techniques to repeatedly probe the entire
design space, which becomes increasingly costly as the size
increases. However, CNNs provide a fundamentally different
approach by modeling the space in a fixed number of pretrained
weight parameters, so the solution time at evaluation is
dependent only upon the number of nodes contained in the
model irrespective of the volume of the underlying design space.
This difference in the method is reflected in the observed
improvements in solution time for CNNs as compared to these
traditional methods.
The field of design in thin-film photonics has seen the

introduction of many methods beyond those mentioned above.
In particular, traditional techniques such as the needle method
have been shown to produce thin-film photonic structures with
extremely high fidelity to defined design targets.47−49 To
illustrate the abilities of our method with respect to this class
of design algorithms, a comparison was made between a
numerical implementation of the needle method and our CNN
models, over the test data set described above. The results of this
comparison can be found in the Supporting Information. From
this analysis, it can be concluded that while the numerical needle
method does work to minimize the spectral RMSE in predicted
structures, the resulting predictions are not typically correct with
respect to the known structural parameters. In fact for four and
five total layers, the needle method predicts the correct layer
material less accurately than random chance while producing a
spectral RMSE much lower than random chance for the
parameter space. The CNN methods, however, produce
structures with both optimized spectral RMSE and structural
parameters. This is a positive feature of our method, that
designing the CNN models to maximize the accuracy of
predicted structural parameters results in a corresponding
decrease in the spectral RMSE. This is a counter to traditional
methods which just attempt to minimize the spectral RMSE and
are much more prone to degenerate solutions.
In addition, many machine learning methods could in

principle be substituted for the CNN methods implemented
in this study because neural networks are essentially “black-box”
methods with different internal representations. The compar-
ison between different network methods is relevant because the
performance metrics shown above are directly influenced by the
network representation efficiency.50,51 To illustrate the ability of
our CNN methods compared to other machine learning
methods, two key comparisons have been considered. The
results of these comparisons are shown in the Supporting
Information. The two methods considered are more traditional
fully connected deep neural networks (FC-DNNs) and more
recent ResNets. From this analysis, it is shown that our CNN
method outperforms the FC-DNN method and performs
similarly to the ResNet method (within 6% spectral RMSE)
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for the reflectance/transmittance structure ID problem. This
indicates that our CNN implementation performs well when
compared to the breadth of possible single network machine
learning methods for this specific problem.

■ CONCLUSIONS
We demonstrate the potential of convolutional neutral networks
to solve the ID problem in thin-film metamaterials for a
completely general library, with multiple choices for both
individual layer materials and thicknesses in systems with
various total layer numbers. This problem is difficult due to the
large input parameter space for systems with many layers.
Furthermore, this convolutional machine learning approach is
shown to solve the ID problem for all legs of the ID triangle. This
includes the ID of physical structures based on both
ellipsometric and reflectance/transmittance spectra individually,
as well as the ability to translate between both spectral types for
systems in the design parameter space. Using this method, ID is
systematically applied to both real and synthetic spectra,
allowing for the creative design of real physical systems based
on arbitrarily drawn spectra. To illustrate the benefits of the
machine learning approach to ID, these methods are then
compared directly with common traditional methods of ID. The
convolutional machine learning approach allows us to globally
probe the design parameter space for a given library of materials
and thicknesses, which can be difficult and costly with traditional
methods. This illustrates the full generalizing ability of neural
networks to produce systems with a desired spectral response for
a wide range of input design parameters.
The neural network-based ID methods applied here are

general in terms of the utilized design parameter library, in the
sense that the choice of a specific design parameter space is not
essential to the observed success of the method. The methods
presented can be easily translated into specific thin-film ID
problems based on the desired ranges of materials and
thicknesses in the output structures. This is a possible extension
of these results into practical implementations for real-life design
scenarios. Another possible extension of this work includes
increasing the possible range of spectral response by
implementing higher-dimensional metamaterial structures in
the existing framework. This proposal relies on two major
considerations. First, once a spectral response has been
generated for any metamaterial structure, the ID problem can
be formulated in terms of a correlation between input spectra
and output structural parameters. In these cases, the problem is
similar, so we expect that a functionally equivalent network
structure should be able to perform the ID problem in both
cases. Second, the generation of training data sets is very similar
for 1-D as well as 2-D, 2.5-D, and 3-D metamaterial structures
because in each case, the data are based on a underlying visible
light electromagnetic simulation. In fact, the optical response for
many of these structures can be generated by similar methods
through the use of the transfer matrix approach in conjunction
with effective medium approximations. Given this similarity, we
would expect that these results should be transferable to higher-
dimensional materials. However, one major issue with
increasing the material dimension is the corresponding increase
in the volume of the accessible parameter space. To overcome
the major increase in parameter space associated with general 2-
D, 2.5-D, and 3-D structures as well as the burden of generating
large numbers of structures and associated spectra, effective
medium approximations of constrained structures could
potentially be employed. Furthermore, the application of the

transfer matrix method as a simulation tool for periodic
metamaterial structures has the potential to drastically decrease
simulation time, allowing for the efficient generation of training
data. Finally, the role of machine learning in nanophotonics
continues to be driven by the discovery and application of new
techniques. The application of developing machine learning
techniques always has the potential to increase the ID efficiency
in future models.

■ METHODS
Generation of the Training Data Set. Training data for

the CNNs were generated using the transfer matrix method for
layered thin-film metamaterial structures.43 Samples were
generated with total layer number in the range of one−five
discrete material layers. Layer thicknesses were chosen
uniformly in the continuous range of [1, 60] nm, with materials
chosen from a library of [Ag, Al2O3, ITO, Au, and TIO2].
Degeneracy is a common problem in photonic ID and an
inevitable feature of a large design library due to the fact that
multiple structures can have very similar spectral response. To
limit degeneracy in the structural parameters, possible structures
with consecutive layers of the samematerial were removed in the
training data set. Our method still achieves high material
accuracy and low layer thickness RMSE despite any remaining
degeneracy in comparison to the needle method.
All structures are simulated on an infinite glass substrate.

Spectral response was calculated for 200 equally spaced points in
the range of [450, 950] nm at the incident angles [25, 45, and
65] deg. A training data set of 200,000 sample structures was
generated for each ID problem type to be used in training the
neural network models (see the Supporting Information for
more information on material optical properties and the
generated data set). This corresponds to a sampling rate of
only about 600 examples per material subspace for four-layer
systems and about 150 examples per material subspace for five-
layer systems.

Design and Tuning of the Convolutional Structure.
The neural network models discussed in this work generally
employ a convolutional architecture. This consists of a series of
1-D convolutional layers, followed by downsampling with a max
pooling layer. The convolutional layers operating on the input
spectral types independently. This is followed by a series of
several fully connected deep layers which are fully connected to
the output nodes. All deep layers are ReLu activation. Mixing of
information from different spectral types is accomplished in
deep fully connected layers following the convolutional layers by
adding together parallel layers. Dropout regularization is
included following each hidden layer in the model. Raw spectra
are passed directly to the network input without further
manipulation, except for dividing the ellipsometric spectra by
45 deg to better range the input values.
A sample network structure can be seen in Figure 1b for the

structure ID of reflectance/transmittance spectra. Individual
CNNs are trained independently for each leg of the ID triangle
as shown in Figure 1a and independently for each total layer
thickness, except the forward simulation (transfer matrix
method) legs. This results in 20 individually trained networks
(four ID problems for each one−five-layer system). Each CNN
model architecture is individually optimized in terms of the total
number of convolutional layers, dense layers, nodes per layer,
dropout rate, and a scaling factor of the learning decay rate. The
variance in optimal CNN hyperparameters for different ID
problems is plausible because the design space can be drastically
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different between individual ID problems. The utilized network
structure for each individual network can be found in the c.
Network Training and Evaluation. CNN training is

performed using Tensorflow and Keras software in a Python 3
environment. All models were trained for 300 epochs, with a set
of 200,000 independent structures. The training learning rate
decay is of the form a t/( 1)+ , where a is a scaling factor
optimized for each individual network. All training was
performed on a single high-performance computing node with
10 cores and 64GB RAM, featuring an NVIDIA 2080 GPU. Full
training of the CNN in this environment takes roughly 3 h. The
CNN evaluation was performed on an independent test set,
consisting of 20,000 independent structures drawn from the
same statistical range as the training set. For consistency, all
networks and comparison optimization methods were evaluated
on a high-performance computing node with 24 cores and 64GB
RAM on the same server and in the same environment as the
network training. Comparisonmethods were fully parallelized to
take full advantage of the available resources. Computational
resource availability was consistent for all comparisons shown in
this work. A full description of the python environment can be
found in the Github repository associated with the paper (link
given below).
Loss Function. The CNN training is guided by the loss

function, which is a mathematical function providing a
quantitative measure of the CNN efficiency by comparing the
CNN output for known “ground truth” examples. During
training, the CNN optimizes internal weight parameters by
minimizing the total loss via the back-propagation algorithm. In
structure ID, the loss function is the categorical cross-entropy of
individual layer material predictions plus 2 times the mean
squared error (MSE) in the predicted layer thicknesses. Note
that layer thickness MSE is correlated with material loss because
the choice of predicted material in each layer necessarily
influences the optimal thickness of that layer. In spectral ID, the
training loss is simply the MSE in the output spectral response.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsphotonics.1c01498.

Link to repository for source code, link to repository for
CNNmodels, material parameters, data set analysis, MSE
landscapes, solution space analysis, CNN results analysis,
impact of spectral features, details of the utilized CNN
models, comparison with other machine learning
methods, and comparison with the needle method
(PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Andrew Lininger − Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106, United States;
orcid.org/0000-0001-6401-7301;

Phone: +12165076952; Email: arl92@case.edu
Michael Hinczewski − Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106, United States;
orcid.org/0000-0003-2837-7697; Email: mxh605@

case.edu
Giuseppe Strangi − Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106, United States;
CNRNANOTEC, Istituto di Nanotecnologia and Department

of Physics, University of Calabria, Rende, Calabria 87036,
Italy; Email: gxs284@case.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsphotonics.1c01498

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge support from the Ohio Third Frontier Project
“Research Cluster on Surfaces in Advanced Materials” (RC-
SAM) at Case Western Reserve University. A.L., M.H., and G.S.
acknowledge financial support from the NSFGrant no. 1904592
“Instrument Development: Multiplex Sensory Interfaces
Between Photonic Nanostructures and Thin Film Ionic
Liquids”. This work made use of the High Performance
Computing Resource in the Core Facility for Advanced
Research Computing at Case Western Reserve University.

■ REFERENCES
(1) Maccaferri, N.; Zhao, Y.; Isoniemi, T.; Iarossi, M.; Parracino, A.;
Strangi, G.; De Angelis, F. Hyperbolic Meta-Antennas Enable Full
Control of Scattering and Absorption of Light. Nano Lett. 2019, 19,
1851−1859.
(2) Liu, Y.; Zhang, X. Metamaterials: a new frontier of science and
technology. Chem. Soc. Rev. 2011, 40, 2494−2507.
(3) Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat.
Mater. 2014, 13, 139−150.
(4) ElKabbash, M.; Letsou, T.; Jalil, S. A.; Hoffman, N.; Zhang, J.;
Rutledge, J.; Lininger, A. R.; Fann, C.-H.; Hinczewski, M.; Strangi, G.;
Guo, C. Fano-resonant ultrathin film optical coatings.Nat. Nanotechnol.
2021, 16, 440−446.
(5) Sreekanth, K. V.; ElKabbash, M.; Caligiuri, V.; Singh, R.; De Luca,
A.; Strangi, G. New Directions in Thin Film Nanophotonics; Springer
Singapore, 2019.
(6) Yao, K.; Unni, R.; Zheng, Y. Intelligent nanophotonics: merging
photonics and artificial intelligence at the nanoscale. Nanophotonics
2019, 8, 339−366.
(7) Molesky, S.; Lin, Z.; Piggott, A. Y.; Jin, W.; Vuckovic,́ J.;
Rodriguez, A. W. Inverse Design in Nanophotonics. Nat. Photonics
2018, 12, 659−670.
(8) Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.;
DeLacy, B. G.; Joannopoulos, J. D.; Tegmark, M.; Soljacǐc,́ M.
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