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Abstract: Additive manufacturing has become an impor-

tant tool for fabricating advanced systems and devices

for visible nanophotonics. However, the lack of simulation

and optimization methods taking into account the essen-

tial physics of the optimization process leads to barriers

for greater adoption. This issue can often result in sub-

optimal optical responses in fabricated devices on both

local and global scales. We propose that physics-informed

design and optimizationmethods, and in particular physics-

informed machine learning, are particularly well-suited to

overcome these challenges by incorporating known physics,

constraints, and fabrication knowledge directly into the

design framework.

Keywords: additive manufacturing; machine learning;

nanophotonics; physics-informed machine learning;
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1 Introduction

The last few decades have seenmajor advances in nanopho-

tonic technology to precisely control the wavefront of light.

In this time, nanophotonic devices have taken on major

roles in a wide range of fields including sensing [1, 2],

communications [3], and energy [4], among others [5]. In
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large part, the growth of experimentally realised nanopho-

tonic systems has been driven by the development and

refinement of fabrication techniques [6]. To fully explore

the design space of devices for manipulating light at the

nanoscale, viable fabrication technologies must be capa-

ble of producing versatile and geometrically accurate 3D

structures at dimensions well below the diffraction limit.

Although there exists many fabrication techniques capable

of fabricating 3D geometries at this scale, in practice the

majority of nanophotonic fabrication is dominated by a few

techniques [7].

The fabrication techniques relevant to visible nanopho-

tonics can be broadly classified into subtractive manufac-

turing and additive manufacturing methods, illustrated in

Figure 1A [8]. In subtractive manufacturing structures are

created by directly removing material from a larger bulk

or photoresist template [9]. Subtractive techniques include

positive resist electron beam (e-beam) lithography or pho-

tolithography, focused ion beam (FIB)milling [10], and deep-

UV lithography [11]. Subtractive techniques are common

in 2D nanophotonics due to their relatively high resolu-

tion, which can regularly reach 10 nm [10]. However, there

are several drawbacks to using subtractive methods for

freeform 3D nanofabrication including design limitations

due to beam path line-of-sight obstruction, and the typical

necessity of multi-step fabrication processes [12]. Addition-

ally, in subtractivemanufacturing the structuredmedium is

often the same material as the substrate. Utilizing a differ-

ent material typically requires a more complex multi-step

process.

Additive manufacturing techniques create nanoscale

structures by directly depositing material in the final

structural form, illustrated in Figure 1A. Some additive

techniques include inkjet (electrohydrodynamic) printing,

dip-pen nanolithography, and direct laser writing (DLW)

[8, 13]. Negative tone e-beam lithography and photolithogra-

phy can also be considered an additive technique. Additive

methods have several desirable traits for nanofabrication

including the capability to fabricate true freeform 3D struc-

tures typically avoiding beam obstruction during deposi-

tion, and reduction in the complexity of the fabrication to
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Figure 1: Comparison of additive and subtractive processes, and some examples of artifacts that can be introduced during the deposition process.

(A) Schematic examples of manufacturing processes. Additive manufacturing (such as two-photon polymerization lithography (TPP)) deposits

nanostructures in the final structural form. Subtractive manufacturing (such as focused ion beam lithography (FIB)) creates nanostructures by

removing material from a larger bulk. (B) Scanning electron microscopy (SEM) image of an array of TPP deposited nano-pillars fabricated with multiple

discrete layers. The side of the pillars is shown. The “bubbled” sidewall is caused by the voxel shape. (C) SEM image illustrating typical shrinking and

striation effects observed during the TPP printing and deposition process. (B) and (C) Are examples of local TPP fabrication artifacts which affect each

nanostructure individually. (D) Example of global fabrication artifacts in TPP. Each square is a regular array of Mie-resonant nano-pillars and should

produce a constant color [16]. The diagonal color gradient in each square is indicative of a global change affecting multiple nanostructures throughout

the array. Real color image in transmission, 10× objective.

few or single-step processes. Since the material is directly

deposited, structures can be fabricated with different mate-

rial than the substrate without resorting to complex multi-

step processes. Additionally, additive manufacturing allows

for fast and flexible deposition and has the potential to

reduce deposition waste – although in current practice

nanolithography is typically wasteful with either method

[14, 15].

Although additive manufacturing has many desirable

aspects, limitations from current deposition technologies

can restrict the application in nanophotonic fabrication.

These complications can be local or global in scale and

generally depend heavily on the particular process parame-

ters [17]. Some examples of typical fabrication non-idealities

encountered in TPP lithography (both local and global) are

shown in Figure 1B–D. Local fabrication errors such as

structural defects affect the optical resonance properties of

single nanostructures, while global errors describe large-

scale trends encompassing entire arrays of nanostructures.

We propose that in many cases the effect of fabrication

related limitations of additive manufacturing can be miti-

gated by utilizing appropriate simulation and design tech-

niques which take into account the essential physics and

geometrical constraints of the additive manufacturing pro-

cesses. The recent growth of physics-informed optimization

methods, in particular physics-informed machine learn-

ing, has opened new opportunities for exploring the com-

plex relationship between photonic structure and optical

response [18]. Physics-informedmethods constructively uti-

lize physical theoretical or experimentally observed infor-

mation which is typically at best implicitly included and

more often explicitly ignored in the optimization process.

Incorporating this knowledge can lead to more highly opti-

mized designs specifically attuned to additive manufactur-

ing processes, with ensuing benefits in device performance.

2 Challenges in two-photon

lithography

Two-photon polymerization lithography (TPP) is the most

common additive manufacturing technique in visible

nanophotonics, as well as one of the most developed, with

over two decades of implementations [19–21]. TPP is a pho-

tochemical DLW process in which a femtosecond laser is

focused into a small volume of photosensitive resin using

a high numerical aperture objective [17, 22]. Full 3D fabrica-

tion is facilitated by moving the position of the laser focus

with high resolution piezoelectrics. Deposition is accom-

plished by laser activation of a photoinitiator process which

selectively polymerizes material in a small volume around
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the laser focus point. By harnessing the nonlinearity of the

two-photon absorption, voxel dimensions of ∼100 nm can

be routinely achieved [22, 23].

From a fabrication standpoint, TPP is desirable for cost,

speed, scalability, and geometrical design flexibility within

the requisite resolution for visible nanophotonics. Addi-

tionally, since the equipment requirements are typically

less than for other lithography techniques, such as e-beam

lithography, TPP has the potential for wider dissemination.

However, barriers to widescale implementation still exist,

predominantly resolution limits and the introduction of

artifacts and errors through fabrication. Although∼100 nm
spatial resolution can be achieved via TPP much higher

resolution (∼10 nm) is commonly required for many meta-
surface designs. This can be regularly obtained with other

lithography techniques. The bound on resolution limits the

range of potential applications and is a fundamental limita-

tion for more complex designs. Several methods have been

proposed to increase the resolution limit, however in gen-

eral these methods significantly complicate the fabrication

process [17, 21]. Geometrical artifacts in TPP can arise from

misplacement of the polymerization voxel [17, 24], transla-

tion of the design into a voxel-by-voxel printing protocol

which can be accomplished by the printer [25, 26], step-wise

layered 3D printing [27], and changes to the structure during

the post-printing development. The latter include shrinking

[28, 29], striation [30], and general deformation. Some exam-

ples of these types of fabrication non-idealities or artifacts

arising from the TPP deposition and development process

are shown in Figure 1. Fabricated artifacts can be local or

global in scale. Local artifacts due to the rounded voxel

shape and striation between parallel layers, respectively,

are shown in Figure 1B and C. Figure 1D shows an arti-

fact where regular arrays composed of multiple nanopillars

exhibit a global trend affecting the color resonance [16]. This

is an example of a global artifact since it involvesmany indi-

vidual nanostructures. Additionally, since TPP is an addi-

tive manufacturing process directly depositing material

into the final configuration, fabrication artifacts not com-

mon in subtractive lithography methods can be introduced

including spatiotemporal variation of chemical or material

properties such as polymerization density, and the inclu-

sion of oligomers (”blobs”) or voids in the final structure

[31, 32].

Fabrication process improvements are one solution to

mitigate fabrication limitations and artifacts, and as such

are the main focus of many current TPP investigations.

Recent advances in TPP technology have centered on opti-

mizing the photo-polymerization chemistry and process-

ing technique to improve throughput, cost, and minimum

feature size [21]. However, such studies can often be time-

consuming and expensive, and the search for new photo-

polymerization chemistries is often challenging.

3 Physics-informed design

approaches

Alongside refinement of the deposition process, we pro-

pose that many of the challenges outlined above could be

mitigated by modifying simulation and design methods to

better encapsulate the physical realities of device fabri-

cation in the design process. In different cases, the func-

tional dependence of fabrication artifacts upon the process

parameters can range from simple to complex. For some

simpler fabrication-based artifacts with clear functional

dependence on system parameters, one way to compensate

for induced artifacts is via offset algorithms (OA) [22, 33].

In the OA process system parameters are varied and their

effects on the resulting structure and optical resonances

are measured. The relationship between input parameter

and response is then used to calculate systematic offsets to

the input to minimize known artifacts. For example, Lim

et al. utilized a OA to correct for deposited structure size dis-

crepancies in a TPP nano-replication process [33]. A system-

atic offset was calculated based on both the designed size

and the voxel size. However, in some cases the dependence

of fabrication artifacts upon the process parameters can

become complicated, making the determination of offsets

difficult. Utilizing the idea of systematic offsets from OA

algorithms, in these cases we propose that modern inverse

design methods can be used to implement more complex

compensation schemes which would be difficult to capture

with traditional methods. In particular, employing physics-

informed inverse design methods that exploit information

fromunderlying theoretical and observed physical relation-

ships could be a powerful tool to correct for a range of

complicated fabrication artifacts.

In recent years inverse design—the computational

design of nanophotonic systems to engineer a particular

electromagnetic response—has helped to reshape the land-

scape of nanophotonic design, leading to a revolution in

the range of potential device capabilities [34, 35]. The cor-

nerstone of these approaches is computational optimization

schemes, including gradient-based approaches and more

sophisticated algorithms such as genetic algorithms [36, 37],

adjointmethods [38], andmachine learning [39, 40]. In these

algorithms, the sensitivity of the electromagnetic response

to changes in the design parameters is calculated frommul-

tiple nanophotonic simulations [41]. In the case of machine
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learning this typically involves the generation of a large

simulated data set. The design parameters are updated in

response to the loss function, a function that calculates a

metric based on the difference between the proposed and

targeted electromagnetic response. The loss function typi-

cally employs a nanophotonic simulation and can contain

terms corresponding to equations and relationships based

on the specific problem at hand.

Nanophotonic optimization is generally difficult due

to large parameter spaces, correlations in the response

between multiple distinct parameters, and highly nonlin-

ear relationships between structure and optical response

[34]. To render the problem more tractable, current design

methodologies typically ignore many details of fabrication

processes in favor of idealized models and structures such

as smooth, homogeneous elements. In reality, the fabricated

structure may be far more complex. Although designs cre-

ated in this process are physically and computationally sim-

pler, they do not necessarily relate to directly fabricable

structures. Artifacts introduced by subsequent fabrication

can lead to sub-optimal electromagnetic response, espe-

cially in the case of high quality-factor resonances [42, 43].

While geometric inconsistencies can sometimes be accom-

modated by increasing model complexity, this can drasti-

cally increase the computational cost. Furthermore, more

detailed fabrication-based effects often involve a range of

physical interactions on multiple scales which can be diffi-

cult to incorporate in a single simulation [44].

We propose that physics-informed optimization and

design methods are especially well-suited for tackling the

problems outlined above. Physics-informed methods build

upon traditionalmethods by incorporating prior knowledge

about the underlying physics and observed data to strate-

gically improve the function of an algorithm [18, 45, 46].

Although the principles of physics-informed methods can

be used to enhance a wide range of optimization and design

algorithms, the vast majority of implementations have been

for machine learning algorithms. Note that all of the tech-

niques described below can be utilized in a machine learn-

ing context. Additionally, somemethods specific to machine

learning will be discussed in Section 3.1.

Physics-informed methods have been implemented in

a diverse array of scientific and engineering fields, includ-

ing metamaterials and photonics [47, 48]. Several works

have recently demonstrated the potential advantages of

physics-informedmethods over traditionalmethods, includ-

ing faster convergence and ‘data efficiency (which is espe-

cially important in many scientific problems), as well as

increased interpretability and generalizability in machine

learning models [49–57].

In traditional optimization, the internalization of a pri-

ori physical information relevant to the design process,

such as approximations, conservation laws, and parameter

relationships, is either generalized from the data set or

ignored. With physics-informed methods, the optimization

algorithm can utilize provided physical knowledge to effec-

tively decrease the complexity of the optimization problem

while creating solutions that better correspond with physi-

cal reality. Similar to how we as humans understand com-

plex physical systems, a hybrid approach utilizing analyti-

cal, computational, and observational elements is often use-

ful to guide our interpretation of otherwise incomprehensi-

ble data sets.

Nanophotonic design optimization for additive man-

ufacturing has many attributes amenable to physics-

informed optimization. Importantly, a well-developed the-

oretical framework for photonics exists, together with a

wealth of experimental data [58]. In many cases, this

extends to the physico-chemical interactions associated

with the polymerization process and the internal struc-

ture of the polymerized material [59]. Since multiple struc-

tures can typically be fabricated and analyzed quickly,

machine- and process-specific observational data can be

readily obtained. Finally, fabrication errors are usually

reproducible, even if they can be difficult to correlate with a

specific parameter. Physics-informed techniques have been

previously implemented in a wide range of other fields,

from manufacturing to climate modeling, so many tech-

niques currently exist which could be applied to photonics

[45, 56, 60–66]. There are several avenues to incorporate

physically relevant information into a design algorithm,

which are explored in detail in the next sections: physical

relationships among parameters, transformations based on

observational data, and physically-determined parameter

constraints. These techniques can be used individually or

in combination to constitute physics-informed optimization

methods, as illustrated in Figure 2A.

3.1 Physical relationships

Physical relationships relating to nanophotonic systems

may include, for example, the laws of electromagnetism,

analytic descriptions of particular resonances, or other

known relations [67–69]. In the specific context of additive

manufacturing we can also consider the chemical aspects

of the photo-polymerization process, secondary reactions

such as quenching mechanisms and reactant depletion, and

relations involving the polymerized material [70–72].

In general, these kinds of relations can be useful in a

variety of ways: as a means to augment the loss function by
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Figure 2: Schematic detailing the physics-informed approaches to

nanophotonic design optimization. (A) Traditional optimization

algorithms (yellow) can be used to tune nanophotonic designs. In

physics-informed methods, physically relevant information (blue) can be

incorporated into the loss function. (B) The physics-informed

nanophotonic deep learning directly incorporates physically relevant

information in the training of machine learning models. This can be

implemented in the training data generation, or in the network training

loop. Note the procedural similarities between the deep learning and

general optimization approaches.

calculating new aspects of generated structures, for includ-

ing information into the optimization process which goes

beyond the scope of simulationmethod, and for introducing

information which is difficult to generalize from data sets.

Other physical relationships can be used in tandem with

different methods, for example in calculating parameter

constraints as described below. Physical relationships can

present in a variety of forms including PDEs/ODEs, induc-

tive biases, general equations, and symmetry operations [18,

73–75]. The specific implementationwill depend on both the

type of problem and the representation of the physical law.

However, most physical relationships can be inserted into

the loss function as transformations of predicted physical

parameters, or implicitly imposed by controlling the func-

tional form of the output [76]. Examples of the latter include

setting up the optimization problem to predict parameters

of a differential equation, or predicting parameters of func-

tionswhichmatch the known symmetrical form of the phys-

ical problem [77–79].

Several recent works have demonstrated the effective-

ness of this approach. For example, in a recent work Chen

et al. created a machine learning based surrogate electro-

magnetic solver with a custom loss function to ensure com-

pliance of the calculated fields with Maxwell’s equations

and used Ampere’s law to calculate electric from magnetic

fields [50, 69]. This enabled a significant speedup in the

optimization time by increasing the physicality of the pro-

posed solutions. Liang et al. created a physics-guided neural

network directly utilizing coupled mode theory to improve

the inverse design of photonic–plasmonic waveguides [80,

81]. This allowed them to design complicated photonic struc-

tures while utilizing compact neural networks, obtaining

high accuracy and simplifying and accelerating the design

problem. In another example Khatib et al. designed a “deep

Lorentzian neural network” machine learning approach to

predict effective medium parameters for a dielectric disk

metasurface [82]. Causality, a property typically neglected

in effective medium approximations, was enforced in the

model prediction by restructuring the network output to

predict the effective permittivity and permeability as a

series of Lorentzian oscillators. These functions are known

to satisfy causality, ensuring compliance in the network

output.

In an example from manufacturing, Liu and Guo cre-

ated a hybrid machine learning and physical modeling sys-

tem to calculate cutting energy in steel milling by combin-

ing physical models of the cutting mechanics with machine

learning methods [83, 84]. The physics-informed model

showed a significantly reduced error compared to the base

model. In nanophotonics, Chen et al. have detailed the ben-

efits of physics-informedmachine learningmethods in com-

putational inverse design, including photonic metamate-

rial design and Mie scattering [67]. We expect that physics-

informedmethods will be especially useful in the context of

difficult metasurface design problems, such as in the design

of Huygens metasurfaces in which the total response can



6 — A. Lininger et al.: Machine learning to optimize additive manufacturing

depend upon long-range interactions between nanopho-

tonic elements [85].

3.2 Observational data

Often a fabricated structure will have a range of aspects

which are not immediately identifiable with a known phys-

ical relationship. This may include, for instance, observed

fabrication artifacts associated with either geometrical or

internal (polymer, chemistry based) features, and experi-

mentally verified parameter trends over time and space [17,

86, 87]. When attempting to optimize for fabrication-based

artifacts, additions based on observational data are often

important. In TPP fabricated devices, the observed data can

be either local to a single structure or global to a larger

nanophotonic array. Observational data additions are gen-

erally useful when attempting to tune simulation models or

fabricated outputs to a specific machine or deposition type,

responding to reproducible artifacts. Artifacts can generally

be identified by fabricating and experimentally measuring

a number of structures. The observed trends can then be

either interpreted in analytic form or incorporated by the

inductive capacity of an optimization or machine learning

method. Fewer structures can be fabricated for artifacts

where the observed trends can be easily explained with few

process variables, however more complex or unpredictable

trends can require experimentally verifying a large range of

structures which may become time and cost intensive [18].

Depending on the specific problem, artifacts may be

best described by a discrete relationship or a distribution of

fabrication results [88]. Discrete relationships (such as regu-

larized post-processing shrinkage) can be incorporated into

the loss function as transformations on the design parame-

ters. For stochastic artifacts (such as randomly distributed

voxel misplacement errors), optimization methods capa-

ble of handling stochastic problems are required [89–91].

Global observed trends can be included by performing the

simultaneous optimization of an entire nanophotonic array,

or by considering offsets to the design of a single structure

based on its spatiotemporal placement during fabrication.

Some artifacts can be easily generalized and incorporated

if they have a calculable effect on a systematic parameter.

However, more complex relationships may rely on tech-

niques such as machine learning to generalize the observed

trends [92].

As an example, Du et al. recently utilized experimen-

tal data on defect formation in metal additive manufac-

turing to build a mechanistic model based on process

variables [65]. This model was then incorporated into a

physics-informed framework to predict and reduce com-

mon structural defects. In another example, Wenzel et al.

utilized physics-informed machine learning to increase the

reliability of fused-filament fabrication, a difficult problem

due to stochastic dependencies on the process parameters

[93]. Both theoretical and experimental data were used to

optimize neural network models to mitigate typical fabrica-

tion errors.

3.3 Fabrication constraints

Knowledge of the physical aspects of the fabrication system

can be used to provide constraints on the acceptable ranges

of design parameters. Fabrication constraints are different

from observational data and physical constraints since they

deal with fundamental limitations due to the fabrication

process rather than introduced artifacts or theoretical limi-

tations [94]. However, the underlying knowledge in the con-

straint can be derived via theoretical or empirical means,

similar to those introduced above. Constraints may include,

for instance, minimum feature size or maximum aspect

ratio structural limits, constraints based on known effective

ranges for specific resonance models, or other structural

limits based on chemical aspects of the polymer [95].

Constraints are typically implemented as a loss func-

tion penalty for out-of-bounds predictions, allowing the

implementation of “soft” constraints based on the severity

of the penalty [96]. Constraints onparameter ranges can also

be directly incorporated by utilizing analytic equations such

as boundary conditions, or indirectly built into the loss func-

tion by passing predicted variables to constrained model

structures, such as range-bounded functions. It should be

noted that often the nonlinearity of the function can often

have an effect upon the optimization.

While constraints specific to fabrication are not as

widely explored in the literature, the incorporation of phys-

ically motivated constraints has been shown to be effec-

tive in a range of optimization problems. As an example,

Chen et al. recently proposed a machine learning model

to characterize deep carbonate reservoirs from seismic

data [97]. This model utilized four types of physically moti-

vated constraints: continuity between data points, bound-

ary constraints, constraints based on the spatial position

of reservoirs, and category constraints to balance the

data set. The performance of the model was significantly

improved by utilizing physics constraints. Lu et al. have

investigated several methods for employing hard and soft

constraints for solving holography and fluid flow inverse

design problems. PDE boundary conditions are imple-

mented as the system constraints in a physics-informed

machine learning context. Including constraints was found

to produce smoother designs for non-unique optimization

problems [57].
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4 Machine learning specific

approaches

The physics-informed principles discussed above can, in

principle, apply to a wide range of optimization techniques

within nanophotonics. However, the dominant application

of physics-informed techniques is in the context of improv-

ing or augmenting machine learning approaches. Several

recent works utilizing physics-informed machine learn-

ing (PIML) approaches are compared in Table 1. We have

focused on works related to nanoscale photonics and addi-

tivemanufacturing. Formore advanced and comprehensive

discussion on PIML approaches we direct the reader to sev-

eral recent reviews on the topic [18, 45, 56, 98–100].

Machine learning is an increasingly important tool in

nanophotonic design, and many recent works have demon-

strated machine learning as a powerful means to solve the

inverse design problem in nanophotonics [40, 48, 101, 102].

Machine learning utilizes data-driven techniques to auto-

mate the internalization of complex information for pre-

diction and decision-making tasks [103, 104]. It is especially

well-suited for dealing with problems where the underly-

ing relationships are complex or hard to generalize with

traditional models. Within machine learning, deep learning

approaches have been widely explored in the context of

nanophotonics [40, 48]. In deep learning multilayer neural

network models are constructed and trained to produce an

internalized representation of the underlying patterns and

relationships in a data set [105, 106]. As with traditional

optimization, deep learning relies on a loss function to quan-

tify the performance of the model.

Although machine learning methods excel at demon-

strating statistical correlations, they are often notorious for

ignoring the physicality of the optimization problem. This

can lead to spurious predictions and overfitting, and engen-

der low generalizability of the model [107, 108]. Physics-

informed methods are one way to counter this issue, allow-

ing the model to access the underlying physics of the learn-

ing problem. PIML extends upon traditional machine learn-

ing by integrating physical knowledge directly into the

construction model and training procedures. A schematic

representation of integrating physical information into the

loss function of machine learning models as described in

the previous section is shown in Figure 2B. PIML has sev-

eral benefits over traditional machine learning. By utiliz-

ing the extended physical information, models can be built

using less training data, and trained more efficiently [109].

PIML models can also possess greater generalizability and

portability to new parameter domains, as well as greater

interpretability and improved robustness when faced with T
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noisy or uncertain data [73, 99]. However, PIML requires

knowledge of the physical underpinnings of an optimiza-

tion problem, which is not always accessible. Additionally,

imposing physical constraints can reduce the innate gener-

alization ability of deep machine learning in cases where

the physics is not fully captured.

Given the optimization capabilities ofmachine learning

and the relative ease at whichmany of the above techniques

canbe implemented in a deep learning framework,machine

learning is situated as a premier tool for physics-informed

optimization of nanophotonic systems [18, 49, 100]. How-

ever, the physics-informed methods described above can

typically be utilized in both machine learning and tradi-

tional optimization schemes. The decision to utilizemachine

learning or traditional optimization should be based on the

specific problemat hand.Machine learning excels at solving

problems involving complex relationships which are diffi-

cult to generalize. For complex problems with many param-

eters, or for many evaluation instances, machine learning

can typically produce results faster than comparable opti-

mization methods [110–112]. However, large training data

sets are typically required which can be computationally

or experimentally intensive, and some neural networks

require long and expensive training times to achieve their

stated performance [113, 114]. For optimization problems

involving fewer parameters and evaluation instances, tra-

ditional optimization may be more efficient than a deep

learning approach. Additionally, in PIML the computational

efficiency of the included models or simulation methods

can have a notable impact on convergence time [115]. This

should be taken into account when deciding to utilize PIML

methods, and alternative simulation types or other physics-

informed components supporting computationally efficient

gradients such as automatic differentiation should be pre-

ferred [116, 117].

In addition to the methods outlined previously, there

are several specific physics-informed machine learning

techniques which are primarily utilized in a deep learning

context. These can be broadly classified into three cate-

gories: physics-informed manipulations of the model input,

components and architecture [56].

Model inputmanipulations involve pre-processing data

at the input of a neural networkmodel to extract or augment

with physically meaningful information. This can involve

any of themain categoriesmentioned above including static

transformations such as Fourier transforms and symmetry

operations, physically relevant simulations, and augmenta-

tion with physically relevant parameters [118, 119]. Input

manipulations can have the effect of guiding the training by

increasing the breadth of input data to the model, or high-

lighting specific relevant featureswhichwould otherwise be

difficult to discern.

Physics-informed manipulation of the model compo-

nents and architecture involves designing the internal

machine learning model structure to encapsulate or tune

the model to better respond to physically relevant aspects

of the optimization problem. Machine learning models sup-

port a number of components on which this technique can

be used, including: activation functions [120, 121], individ-

ual layer and model types [122–124], parameter initializa-

tion [125], and deep learning layer and model structure

[126–129]. In each case the machine learning model compo-

nents are chosen to reflect a specific aspect of the physical

system. For example, Howland andDabiri [120] recently cre-

ated a machine learning model using an activation function

mirroring the nonlinearity observed in a relevant physical

parameter. This allowed the model to better encapsulate

the physical problem, reducing prediction error. In the con-

text of layer and model structure, Gao et al. [122] recently

designed amethod to utilize convolutional neural networks

with PDEs on non-uniform grids which are common in a

range of physical problems.

5 Conclusions

Additive manufacturing is a promising technology for

widespread applications in visible photonics. However, it

faces several challenges relating to the design of real-

istically fabricable structures. We propose that physics-

informed methods—embedding physically relevant infor-

mation within optimization or machine learning mod-

els—are particularly well positioned to create design and

optimization frameworks capable of rising to these chal-

lenges for visible photonics.
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