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The anisotropic XXZ spin-1
2 Heisenberg chain is studied using renormalization-group theory. The specific

heats and nearest-neighbor spin-spin correlations are calculated throughout the entire temperature and aniso-
tropy ranges in both ferromagnetic and antiferromagnetic regions, obtaining a global description and quanti-
tative results. We obtain, for all anisotropies, the antiferromagnetic spin-liquid spin-wave velocity and the
Ising-like ferromagnetic excitation spectrum gap, exhibiting the spin-wave to spinon crossover. A number of
characteristics of purely quantum nature are found: The in-plane interaction si

xsj
x+si

ysj
y induces an antiferro-

magnetic correlation in the out-of-plane si
z component, at higher temperatures in the antiferromagnetic XXZ

chain, dominantly at low temperatures in the ferromagnetic XXZ chain, and, in-between, at all temperatures in
the XY chain. We find that the converse effect also occurs in the antiferromagnetic XXZ chain: an antiferro-
magnetic si

zsj
z interaction induces a correlation in the si

xy component. As another purely quantum effect, �i� in
the antiferromagnet, the value of the specific heat peak is insensitive to anisotropy and the temperature of the
specific heat peak decreases from the isotropic �Heisenberg� with introduction of either type �Ising or XY� of
anisotropy; and �ii� in complete contrast, in the ferromagnet, the value and temperature of the specific heat peak
increase with either type of anisotropy.

DOI: 10.1103/PhysRevB.77.134413 PACS number�s�: 67.10.Fj, 75.10.Pq, 64.60.Cn, 05.10.Cc

I. INTRODUCTION

The quantum Heisenberg chain, including the possibility
of spin-space anisotropy, is the simplest nontrivial quantum
spin system and has thus been widely studied since the very
beginning of the spin concept in quantum mechanics.1–3 In-
terest in this model continued4–10 and redoubled with the
exposition of its richly varied low-temperature behavior11–13

and of its relevance to high-temperature
superconductivity.14–18 It has become clear that antiferro-
magnetism and superconductivity are firmly related to each
other, adjoining and overlapping each other.

A large variety of theoretical tools have been employed in
the study of the various isotropic and anisotropic regimes of
the quantum Heisenberg chain, including finite-systems
extrapolation,6,19 linked-cluster7 and dimer-cluster20 expan-
sions, quantum decimation,21 decoupled Green’s functions,22

quantum transfer matrix,23,24 high-temperature series
expansion,25 and numerical evaluation of multiple
integrals.26 The XXZ Heisenberg chain retains high current
interest as a theoretical model27,28 with direct experimental
relevance.29

In the present paper, a position-space renormalization-
group method introduced by Suzuki and Takano30,31 for d
=2 dimensions and already applied to a number of d�1
systems30–36 is used to compute the spin-spin correlations
and the specific heat of the d=1 anisotropic quantum XXZ
Heisenberg model, easily resulting in a global description
and detailed quantitative information for the entire tempera-
ture and anisotropy ranges including the ferromagnetic and
antiferromagnetic, the spin-liquid and Ising-like regions. We
obtain, for all anisotropies, the antiferromagnetic spin-liquid

spin-wave velocity and the Ising-like ferromagnetic excita-
tion spectrum gap, exhibiting the spin-wave to spinon cross-
over. A number of other characteristics of purely quantum
nature are found: The in-plane interaction si

xsj
x+si

ysj
y induces

an antiferromagnetic correlation in the out-of-plane si
z com-

ponent, at higher temperatures in the antiferromagnetic XXZ
chain, dominantly at low temperatures in the ferromagnetic
XXZ chain, and, in-between, at all temperatures in the XY
chain. We find that the converse effect also occurs in the
antiferromagnetic XXZ chain: an antiferromagnetic si

zsj
z inter-

action induces a correlation in the si
xy component. As another

purely quantum effect, �i� in the antiferromagnet, the value
of the specific heat peak is insensitive to anisotropy and the
temperature of the specific heat peak decreases from the iso-
tropic �Heisenberg� with the introduction of either type �Ising
or XY� of anisotropy; and �ii� in complete contrast, in the
ferromagnet, the value of the specific heat peak is strongly
dependent on anisotropy and the temperature of the specific
heat peak increases with either type of anisotropy. This
purely quantum effect is a precursor to different phase tran-
sition temperatures in three dimensions.32,36–38 Our calcula-
tional method is relatively simple, readily yields global re-
sults, and is overall quantitatively successful.

II. ANISOTROPIC QUANTUM HEISENBERG MODEL
AND THE RENORMALIZATION-GROUP METHOD

A. Anisotropic quantum Heisenberg model

The spin-1
2 anisotropic Heisenberg model �XXZ model� is

defined by the dimensionless Hamiltonian
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− �H = �
�ij�

�Jxy�si
xsj

x + si
ysj

y� + Jzsi
zsj

z + G� , �1�

where �=1 /kBT and �ij� denotes summation over nearest-
neighbor pairs of sites. Here the si

u are the quantum mechani-
cal Pauli spin operators at site i. The additive constant G is
generated by the renormalization-group transformation and
is used in the calculation of thermodynamic functions. The
anisotropy coefficient is R=Jz /Jxy. The model reduces to the
isotropic Heisenberg model �XXX model� for �R�=1, to the
XY model for R=0, and to the Ising model for �R�→�.

B. Renormalization-group recursion relations

The Hamiltonian in Eq. �1� can be rewritten as

− �H = �
i

�− �H�i,i + 1�� , �2�

where �H�i , i+1� is a Hamiltonian involving sites i and i
+1 only. The renormalization-group procedure, which elimi-
nates half of the degrees of freedom and keeps the partition
function unchanged, is done approximately30,31 as

Trodd e−�H = Trodd e�i�−�H�i,i+1��

= Trodd e�i
odd�−�H�i−1,i�−�H�i,i+1��

	 

i

odd

Tri e�−�H�i−1,i�−�H�i,i+1��

= 

i

odd

e−��H��i−1,i+1�

	 e�i
odd�−��H��i−1,i+1�� = e−��H�. �3�

Here and throughout this paper, the primes are used for the
renormalized system. Thus at each successive length scale
we ignore the noncommutativity of the operators beyond
three consecutive sites, in the two steps indicated by 	 in the
above equation. Since the approximations are applied in op-
posite directions, one can expect some mutual compensation.
Earlier studies30,31,33–35 have been successful in obtaining
finite-temperature behavior on a variety of quantum systems.

The transformation above is summarized by

e−��H��i,k� = Trj e�−�H�i,j�−�H�j,k��, �4�

where i , j ,k are three successive sites. The operator
−��H��i ,k� acts on two-site states, while the operator
−�H�i , j�−�H�j ,k� acts on three-site states, so that we can
rewrite Eq. �4� in the matrix form

�uivk�e−��H��i,k��ūiv̄k� = �
wj

�uiwjvk�e−�H�i,j�−�H�j,k��ūiwjv̄k� ,

�5�

where state variables u, v, w, ū, and v̄ can take spin-up or
spin-down values at each site. The unrenormalized 8�8 ma-
trix on the right-hand side is contracted into the renormalized
4�4 matrix on the left-hand side of Eq. �5�. We use two-site
basis states vectors ���p�� and three-site basis states vectors
���q�� to diagonalize the matrices in Eq. �5�. The states

���p��, given in Table I, are eigenstates of parity, total spin
magnitude, and total spin z component. These ���p�� diago-
nalize the renormalized matrix, with eigenvalues

�1 =
1

4
Jz� + G�, �2 = +

1

2
Jxy� −

1

4
Jz� + G�,

�4 = −
1

2
Jzxy� −

1

4
Jz� + G�. �6�

The states ���q��, given in Table II, are eigenstates of parity
and total spin z component. The ���p�� diagonalize the un-
renormalized matrix, with eigenvalues

�1 =
1

2
Jz + 2G, �4 = 2G ,

�2 = −
1

4
�Jz + �8Jxy

2 + Jz
2� + 2G ,

�3 = −
1

4
�Jz − �8Jxy

2 + Jz
2� + 2G . �7�

With these eigenstates, Eq. �5� is rewritten as

	p � ��p�e−��H��i,k���p�

= �
u,v,ū,

v̄,w,q

��p�uivk��uiwjvk��q�

���q�e−�H�i,j�−�H�j,k���q���q�ūiwjv̄k��ūiv̄k��p� . �8�

Thus there are three independent 	p that determine the renor-
malized Hamiltonian and, therefore, three renormalized in-

TABLE I. The two-site basis eigenstates that appear in Eq. �8�.
These are the well-known singlet and triplet states. The state ��3� is
obtained by spin reversal from ��1�, with the same eigenvalue.

p s ms Two-site basis eigenstates


 1 1 ��1�= �↑ ↑ �
0 ��2�= 1

�2
��↑ ↓ �+ �↓ ↑ ��

� 0 0 ��4�= 1
�2

��↑ ↓ �− �↓ ↑ ��

TABLE II. The three-site basis eigenstates that appear
in Eq. �8� with coefficients �= �−Jz+�8Jxy

2 +Jz
2� /2Jxy, = �Jz

+�8Jxy
2 +Jz

2� /2Jxy, and normalization factors �, �. The states ��5−8�
are obtained by spin reversal from ��1−4�, with the same respective
eigenvalues.

p ms Three-site basis eigenstates


 3 /2 ��1�= �↑ ↑ ↑ �
1 /2 ��2�=���↑ ↑ ↓ �+��↑ ↓ ↑ �+ �↓ ↑ ↑ ��

��3�=��−�↑ ↑ ↓ �+�↑ ↓ ↑ �− �↓ ↑ ↑ ��
� 1 /2 ��4�= 1

�2
��↑ ↑ ↓ �− �↓ ↑ ↑ ��
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teractions in the Hamiltonian closed under renormalization-
group transformation, Eq. �1�. These 	p are

	1 = e�1/4�Jz�+G�

= e2G−�1/4�Jze�3/4�Jz + cosh�1

4
�8Jxy

2 + Jz
2�

−

Jz sinh�1

4
�8Jxy

2 + Jz
2�

�8Jxy
2 + Jz

2 � ,

	2 = e�1/2�Jxy� −�1/4�Jz�+G�

= 2e2G−�1/4�Jzcosh�1

4
�8Jxy

2 + Jz
2�

+

Jz sinh�1

4
�8Jxy

2 + Jz
2�

�8Jxy
2 + Jz

2 � ,

	4 = e−�1/2�Jxy� −�1/4�Jz�+G� = 2e2G, �9�

which yield the recursion relations

Jxy� = ln�	2

	4
�, Jz� = ln� 	1

2

	2	4
�, G� =

1

4
ln�	1

2	2	4� .

�10�

As expected, Jxy� and Jz� are independent of the additive con-
stant G and the derivative �GG�=bd=2, where b=2 is the
rescaling factor and d=1 is the dimensionality of the lattice.

For Jxy =Jz, the recursion relations reduce to the spin-1
2

isotropic Heisenberg �XXX� model recursion relations, while
for Jxy =0 they reduce to the spin-1

2 Ising model recursion
relations. The Jz=0 subspace �XY model� is not �and need
not be� closed under these recursion relations:30,31 The
renormalization-group transformation induces a positive Jz
value, but the spin-space easy-plane aspect is maintained.

In addition, there exists a mirror symmetry along the Jz
axis, so that Jxy� �−Jxy ,Jz�=Jxy� �Jxy ,Jz� and Jz��−Jxy ,Jz�
=Jz��Jxy ,Jz�. The thermodynamics of the system remains un-
changed under flipping the interactions of the x and y spin
components, since the renormalization-group trajectories do
not change. In fact, this is part of a more general symmetry
of the XYZ model, where flipping the signs of any two inter-
actions leaves the spectrum unchanged.8 Therefore with no
loss of generality, we take Jxy �0. Independent of the sign of
Jxy, Jz�0 gives the ferromagnetic model and Jz�0 gives the
antiferromagnetic model.

C. Calculation of densities and response functions by the
recursion-matrix method

Just as the interaction constants of two consecutive points
along the renormalization-group trajectory are related by the

recursion relations, the densities are connected by a recursion

matrix T̂, which is composed of derivatives of the recursion
relations. For our Hamiltonian, the recursion matrix and den-

sity vector M� are

T̂ =�
�G�

�G

�G�

�Jxy

�G�

�Jz

0
�Jxy�

�Jxy

�Jxy�

�Jz

0
�Jz�

�Jxy

�Jxy�

�Jz

� ,

M� = �1 2�si
xysj

xy� �si
zsj

z�� . �11�

These are densities M� associated with each interaction K�,

M� =
1

N�

� ln Z

�K�

, �12�

where N� is the number of �-type interactions and Z is the
partition function for the system, which can be expressed

both via the unrenormalized interaction constants as Z�K� � or

via the renormalized interaction constants as Z�K�� �. By using
these two equivalent forms, one can formulate the density
recursion relation39

M� = b−d�
�

M��T��, T�� �
N�

N�

�K��

�K�

. �13�

Since the interaction constants, under renormalization-group
transformation, stay the same at fixed points such as critical
fixed points or sinks, the above Eq. �13� takes the form of a
solvable eigenvalue equation,

bdM� * = M� * · T̂ , �14�

at fixed points, where M� =M�� =M� *. The fixed point densities
are the components of the left eigenvector of the recursion
matrix with eigenvalue bd.39 At ordinary points, Eq. �13� is
iterated until a sink point is reached under successive
renormalization-group transformations. In algebraic form,
this means

M� �0� = b−ndM� �n�T̂�n�T̂�n−1�
¯ T̂�1�, �15�

where the upper indices indicate the number of iteration

�transformation�, with M� �n�	M� *. This method is applied on
our model Hamiltonian. The sink of the system is at infinite
temperature J

xy
* =J

z
*=0 for all initial conditions �Jxy ,Jz�.

Response functions are calculated by differentiation of
densities. For example, the internal energy is U=−2�si

xysj
xy�

−R�si
zsj

z�, employing T=1 /Jxy, and U=−2�si
xysj

xy� /R− �si
zsj

z�,
employing T=1 / �Jz�. The specific heat C=�TU follows from
the chain rule,

C = Jxy
2 ��2�si

xysj
xy� + R�si

zsj
z��

�Jxy
, for T = 1/Jxy ,
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C = Jz
2��2�si

xysj
xy�/R + �si

zsj
z��

��Jz�
, for T = 1/�Jz� . �16�

III. CORRELATIONS SCANNED WITH RESPECT TO
ANISOTROPY

The ground-state and excitation properties of the XXZ
model offer a variety of behaviors:11,12,40,41 The antiferro-
magnetic model with R�−1 is Ising-like and the ground
state has Néel long-range order along the z spin component
with a gap in the excitation spectrum. For −1�R�1, the
system is a “spin liquid,” with a gapless spectrum and
power-law decay of correlations at zero temperature. The
ferromagnetic model with R�1 is also Ising-like, the ground
state is ferromagnetic along the z spin component, with an
excitation gap.

Our calculated �si
zsj

z� and �si
xysj

xy���si
xsj

x�= �si
ysj

y� nearest-
neighbor spin-spin correlations for the whole range of the
anisotropy coefficient R are shown in Fig. 1 for various tem-

peratures. The xy correlation is always non-negative. Recall
that we use Jxy �0 with no loss of generality. In the Ising-
like antiferromagnetic �R�−1� region, the z correlation is
expectedly antiferromagnetic. As the �si

zsj
z� correlation satu-

rates for large �R�, the transverse �si
xysj

xy� correlation is some-
what depleted. In the Ising-like ferromagnetic �R�1� region,
the �si

zsj
z� correlation is ferromagnetic and saturates quickly

as the �si
xysj

xy� correlation quickly goes to zero. In the spin-
liquid ��R��1� region, the �si

zsj
z� correlation monotonically

passes through zero in the ferromagnetic side, while the
�si

xysj
xy� correlation is maximal. The remarkable quantum be-

havior of �si
zsj

z� around R=0 is discussed in V below. It is
seen in the figure that these changeovers are increasingly
sharp as temperature is decreased and, at zero temperature,
become discontinuous at R=1. As seen in Fig. 1�b�, at zero
temperature, our calculated �si

zsj
z� and �si

xysj
xy� correlations

show very good agreement with the known exact
points.4,42–44 Also, our results for R�1 fully overlap the ex-
act results of �si

zsj
z�=0.25 and �si

xysj
xy�=0.40 We also note that

zero temperature is the limit in which our approximation is at
its worst.

IV. ANTIFERROMAGNETIC XXZ CHAIN

For the antiferromagnetic XXZ chain, our calculated �si
zsj

z�
and �si

xysj
xy� nearest-neighbor spin-spin correlations as a func-

tion of temperature are shown in Fig. 2 for various aniso-
tropy coefficients R. We find that when Jxy is the dominant
interaction �spin liquid�, the correlations are weakly depen-
dent on anisotropy R. When Jz is the dominant interaction
�Ising-like�, the correlations are weakly dependent on aniso-
tropy R only at the higher temperatures. Our results are com-

FIG. 1. �a� Calculated nearest-neighbor spin-spin correlations
�si

zsj
z� �thick curves from lower left� and �si

xysj
xy� �thin curves from

upper left� as a function of anisotropy coefficient R for temperatures
1 /Jxy =0, 0.1, 0.2, 0.4, and 0.8. �b� Calculated zero-temperature
nearest-neighbor spin-spin correlations �thin and thick curves, as in
the upper panel� compared with the exact points of Refs. 4, 40, and
42–44 shown with closed and open symbols for �si

zsj
z� and �si

xysj
xy�,

respectively. At R=1, the calculated �si
zsj

z� discontinuously goes
from antiferromagnetic to the exact result of 0.25 �Ref. 40� of satu-
rated ferromagnetism and the calculated �si

xysj
xy� discontinuously

goes from ferromagnetic to the exact result of constant zero �Ref.
40�.

FIG. 2. Calculated nearest-neighbor spin-spin correlations
�si

xysj
xy� �upper panels� and �si

zsj
z� �lower panels� for the antiferro-

magnetic XXZ chain, as a function of temperature, for anisotropy
coefficients R=0, −0.25, −0.50, −0.75, −1, −2, −4, −8, and −�
spanning the spin-liquid �left panels� and Ising-like �right panels�
regions. Note that, in every one of the panels, the correlation curves
cross each other. This remarkable quantum phenomenon is dis-
cussed in the text.
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pared with multiple-integral results26 in Fig. 3.
In every one of the panels of Fig. 2, the correlation curves

cross each other, revealing a remarkable quantum phenom-
enon. In a classical system, the correlation between a given
spin component �e.g., �si

xysj
xy�� is expected to decrease when

the coupling of another spin component �e.g., �Jz�� is in-
creased. It is found from the antiferromagnetic XXZ chain in
Fig. 2 that the opposite may occur in a quantum system: In
this figure, an increase in Jxy causes an increase in ��si

zsj
z�� for

1 / �Jz��0.9 and 0.4 in the spin-liquid and Ising-like regions,
respectively. Conversely, an increase in �Jz� causes an in-
crease in �si

xysj
xy� for 1 /Jxy �0.4 and 2.1 in the spin-liquid

and Ising-like regions, respectively. This quantum effect can
be called cross-component spin correlation.

The antiferromagnetic specific heats calculated with Eq.
�16� are shown in Fig. 4 for various anisotropy coefficients
and compared, in Figs. 5 and 6, with finite-lattice

expansion,6,19 quantum decimation,21 transfer matrix,24 high-
temperature series expansion25 results and, for the R=0 case,
namely the XY model, with the exact result5 C
= �1 /4�T��0

��cos � /cosh� cos �
2T ��2d�. The C�T� peak tempera-

ture is highest for the isotropic case �Heisenberg� and de-
creases with anisotropy increasing in either direction �to-
wards Ising or XY�. The peak value of C�T� is only weakly
dependent on anisotropy, especially for the Ising-like sys-
tems. A strong contrast to this behavior will be seen, as an-
other quantum mechanical phenomenon, in the ferromag-
netic XXZ chain.

The linearity, at low temperatures, of the spin liquid ��R�
�1� specific heat with respect to temperature is expected on
the basis of spin-wave calculations for the antiferromagnetic
XXZ model.45,46 This linear form of C�T� reflects the linear
energy-momentum dispersion of the low-lying excitations,
the magnons. The low-temperature magnon dispersion rela-
tion is ��=ckn, where c is the spin-wave velocity and n=1
for the antiferromagnetic XXZ model in d=1.40 The internal
energy, given by U= �1 /2���0

�dk���k� / �e����k�−1�, is domi-
nated by the magnons at low temperatures, yielding U�T2

and C�T for n=1 in the dispersion relation. From this rela-
tion, our calculated spin-wave velocity c as a function of
anisotropy R is given in Fig. 7 and compares well with the
also shown exact result.47 A simultaneous fit to the dispersion
relation exponent n, expected to be 1, yields 1.00�0.02.
However, for the Ising-like −R�1, the unexpected linearity
instead of an exponential form caused by a gap in the exci-
tation spectrum points to the approximate nature of our
renormalization-group calculation. The correct exponential
form is obtained in the large −R limit, where the
renormalization-group calculation becomes exact.

Rojas et al.25 have obtained the high-temperature expan-
sion of the free energy of the XXZ chain to order �3, where
� is the inverse temperature. The specific heat from this ex-
pansion is

FIG. 3. Comparison of our results �thick lines� for the correla-
tion functions of the antiferromagnetic XXZ chain, with the
multiple-integral results of Ref. 26 �thin lines�, for various aniso-
tropy coefficients R spanning the spin-liquid and Ising-like regions.

FIG. 4. Calculated specific heats C of the antiferromagnetic
XXZ chain, as a function of temperature for anisotropy coefficients
R=0, −0.25, −0.50, −0.75, −1, −2, −4, −8, and −� spanning the
spin-liquid �upper panel� and Ising-like �lower panel� regions.

FIG. 5. Comparison of our antiferromagnetic specific heat re-
sults �thick lines� with the results of Refs. 5 �open circles�, Ref. 6
�dotted line�, Ref. 19 �thin line�, Ref. 21 �dash-dotted lines�, and
Refs. 23 and 24 �dashed lines�, for anisotropy coefficients R=0,
−0.5, −1, and −2 spanning the spin-liquid and Ising-like regions.
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C =
2 + R2

16
Jxy

2 −
3R

32
Jxy

3 +
6 − 8R2 − R4

256
Jxy

4 . �17�

This high-temperature specific heat result is also compared
with our results, in Fig. 6, and very good agreement is seen.
In fact, when in the high-temperature region of 0���0.1,
we fit our numerical results for C��� to the fourth degree
polynomial C=�i=0

4 Ai�
i, and we do find �1� the vanishing

A0�10−5 and A1�10−7 for all R and �2� the comparison in
Fig. 8 between our results for A2 and A3 and those of Eq.
�17� from Ref. 25, thus obtaining excellent agreement for all
regions of the model.

V. FERROMAGNETIC XXZ CHAIN

For the ferromagnetic �i.e., R�0� systems in Fig. 1, the
�si

zsj
z� expectation value becomes rapidly negative at lower

temperatures for R�1, even though for R�0 all couplings
in the Hamiltonian are ferromagnetic. This is actually a real
physical effect, not a numerical anomaly. In fact, we know

the spin-spin correlations for the ground state of the one-
dimensional XY model �the R=0 case of our Hamiltonian�,
and we can compare our low-temperature results with these
exact values. The ground-state properties of the spin-1

2 XY
model are studied by making a Jordan-Wigner transforma-
tion, yielding a theory of noninteracting spinless fermions.
Analysis of this theory yields the exact zero-temperature
nearest-neighbor spin-spin correlations4 shown in Table III.
Our renormalization-group results in the zero-temperature
limit, also shown in this table, compare quite well with the
exact results, as with the other exact points in Fig. 1�b�,
although in the worst region for our approximation. Finally,
by continuity, it is reasonable that for a range of R positive
but less than one, the z component correlation function is as
we find, intriguingly but correctly negative at low tempera-
tures. Thus the interaction si

xsj
x+si

ysj
y �irrespective of its sign,

due to the symmetry mentioned at the end of Sec. II B� in-
duces an antiferromagnetic correlation in the si

z component,
competing with the si

zsj
z interaction when the latter is ferro-

magnetic.
For finite temperatures, our calculated nearest-neighbor

spin-spin correlations are shown in Figs. 9 and 10 for differ-
ent values of R. These results are compared with Green’s
function calculations22 in Fig. 11. As expected from the dis-
cussion at the beginning of this section, in the spin-liquid
region, the correlation �si

zsj
z� is negative at low temperatures.

Thus a competition occurs in the correlation �si
zsj

z� between
the XY-induced antiferromagnetism and the ferromagnetism
due to the direct coupling between the sz spin components. In

FIG. 6. Comparison of our antiferromagnetic specific heat re-
sults �thick lines� with the high-temperature J→0 behaviors �thin
lines� obtained from series expansion in Ref. 25 for anisotropy co-
efficients R=0, −0.50, −0.75, −1, −2, and −� spanning the spin-
liquid and Ising-like regions.

FIG. 7. Our calculated antiferromagnetic spin-wave velocity c
versus the anisotropy coefficient R. The dashed line, 2� sin�	� /	
where 	�cos−1�−R�, is the exact result �Ref. 47�.

FIG. 8. Comparison of our results with the high-temperature
expansion of Ref. 25 for all regions: antiferromagnetic �outer pan-
els� and ferromagnetic �inner panels�, spin-liquid �left panels� and
Ising-like �right panels�. Triangles and circles denote our results,
while solid and dashed lines denote the results of Ref. 25 for A2 and
A3, respectively. The error bars, due to the statistical fitting proce-
dure of the coefficients A2 and A3, have half-heights of 1.7�10−4

and 2.6�10−3, respectively.

TABLE III. Zero-temperature nearest-neighbor correlations of
the spin-1

2 XY chain.

Zero-temperature
correlations of
the spin-1

2 XY
chain

Exact
values

from Ref. 4

Our renormalization-
group theory

results

�si
xysj

xy� 0.15915 0.17678

�si
zsj

z� −0.10132 −0.12500
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fact, the reinforcement of antiferromagnetic correlations of
�si

zsj
z� by increasing Jxy �and also its converse� was seen in

the antiferromagnetic XXZ chain discussed in the previous
section. Thus we see that whereas this cross-component ef-
fect is dominant at low temperatures in the ferromagnetic
XXZ chain, it is seen at higher temperatures in the antiferro-
magnetic XXZ chain and, in-between, throughout the tem-
perature range in the XY chain.

In the ferromagnetic XXZ chain, as a consequence of the
competition mentioned above, a sign reversal in �si

zsj
z� occurs

from negative to positive correlation, at temperatures Jxy
−1

=T0�R�.48 At this temperature, by cancellation of the compet-
ing effects, the nearest-neighbor correlation �si

zsj
z� is zero.

Our calculated T0�R� curve is shown in Fig. 10 and has very
good agreement with the exact result T0
= ��3sin 	 /4	�tan����−	� /2	� where 	�cos−1�−R�.23

The calculated ferromagnetic specific heats are shown in
Fig. 12 for various anisotropy coefficients and compared, in

Figs. 13 and 14, with finite-lattice expansion,6 quantum
decimation,21 decoupled Green’s functions,22 transfer
matrix,23,24 high-temperature series expansion25 results and,
for the R=0 case, namely the XY model, with the exact
result5 C= �1 /4�T��0

��cos � /cosh� cos �
2T ��2d�. In sharp con-

trast to the antiferromagnetic case in Sec. IV, the peak C�T�
temperature is highest for the most anisotropic cases �XY or
Ising� and decreases with anisotropy decreasing from either
direction �towards Heisenberg�. In the same contrast, the
peak value of C�T� is dependent on anisotropy, decreasing,
eventually to a flat curve, as anisotropy is decreased. This
contrast between the ferromagnetic and antiferromagnetic
systems is a purely quantum phenomenon. Specifically, the
marked contrast between the specific heats of the isotropic
antiferromagnetic and ferromagnetic systems, seen in the full
curves of Figs. 4 and 12 respectively, translates into the dif-
ferent critical temperatures of the respective three-
dimensional systems.32,36–38 Classical ferromagnetic and an-
tiferromagnetic systems are, on the other hand, identically
mapped onto each other.

The low-temperature specifics heats are discussed in de-
tail and compared to other results in Sec. VI.

FIG. 11. Comparison of our ferromagnetic R=1, 5
3 results with

Green’s function calculations �Ref. 22�.

FIG. 12. Calculated specific heats C of the ferromagnetic XXZ
chain, as a function of temperature for anisotropy coefficients
R=0, 0.25, 0.50, 0.75, 1, 2, 4, 8, and � spanning the spin-liquid
�upper panel� and Ising-like �lower panel� regions.

FIG. 9. Calculated nearest-neighbor spin-spin correlations
�si

xysj
xy� �upper panels� and �si

zsj
z� �lower panels� for the ferromag-

netic XXZ chain, as a function of temperature, for anisotropy coef-
ficients R=0, 0.25, 0.50, 0.75, 1, 2, 4, 8, and � spanning the spin-
liquid �left panels� and Ising-like �right panels� regions.

FIG. 10. Left panel: Calculated nearest-neighbor spin-spin cor-
relations �si

zsj
z� for the ferromagnetic XXZ chain, as a function of

temperature 1 /Jxy in the spin liquid, for anisotropy coefficients R
=0, 0.25, 0.50, 0.75, and 1. Right panel: The sign-reversal tempera-
ture T0 of the nearest-neighbor correlation �si

zsj
z�: our results �full

curve� and the analytical result from the quantum transfer matrix
method �dashed� �Ref. 23�.
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VI. LOW-TEMPERATURE SPECIFIC HEATS

Properties of the low-temperature specific heat of the fer-
romagnetic XXZ chain have been derived from the thermo-
dynamic Bethe-ansatz equations.40 For anisotropy coefficient
�R��1, the model is gapless11,12 and, except at R=1, the
specific heat is linear in T=Jxy

−1 in the zero-temperature limit,
C /T=2	 / �3 sin 	� where again 	�cos−1�−R�. Note that this
result contradicts the spin-wave theory prediction of C
�T1/2 for the ferromagnetic chain �n=2 for the ferromag-

netic magnon dispersion relation of the kind given above in
Sec. IV�. The spin-wave result is valid only for R=1, the
isotropic Heisenberg case. From the expression given above,
we see that C /T diverges as R→1−, and at exactly R=1 it
has been shown that C�T1/2.40

In the Ising-like region R�1, the system exhibits a gap in
its excitation spectrum and the specific heat behaves as C
�T−a exp�−� /T�, with � being the excitation spectrum
gap.11,12,40 There exist two gaps for the energy, called the
spinon gap and the spin-wave gap, given by �spinon

= 1
2
�1−R−2 and �spin wave=1−R−1. These are the minimal en-

ergies of elementary excitations.10,40 A crossover between
them occurs at R= 5

3 : below this value, the spinon gap is
lower, while above this value the spin-wave gap is lower. We
have double-fitted our calculated specific heats with respect
to the gap � and the leading exponent a, for the entire range
of anisotropy R between 0�R−1�1 �Fig. 15�. Our calcu-
lated gap � behaves linearly in R−1 for R−1 close to 1, and
crosses over to 1 /2 at R−1=0, as expected. We also obtain
the exponent a=1.99�0.02 in the Ising limit R−1�0.2 and
a=1.52�0.10 in the Heisenberg limit R−1�0.9. These ex-
ponent values are, respectively, expected to be 2 and 1.5.9,10

We now turn to the discussion of our specific heat results
for the entire ferromagnetic and antiferromagnetic ranges.
Our calculated C /T curves are plotted as a function of aniso-
tropy and temperature in Figs. 16 and 17, respectively. We
discuss each region of the anisotropy R separately.

�i� R�1: The specific heat coefficient C /T vanishes in the
T→0 limit and has the expected exponential form as dis-
cussed above in this section. The spin-wave to spinon exci-
tation gap crossover is obtained.

�ii� R�1: The double-peak structure of C /T in Fig. 16 is
centered at R=1. As temperature goes to zero, the peaks
narrow and diverge.

�iii� −1�R�1: The specific heat coefficient is C /T
=2	 / �3 sin 	� in this region,11,40 and our calculated specific
heat is indeed linear at low temperatures. The C /T curves for
R=−1, −0.5, and 0.5 in Fig. 17 all extrapolate to nonzero
limits at T=0. The spin-wave dispersion relation exponent
and velocity, for the antiferromagnetic system, is correctly
obtained for the isotropic case and for all anisotropies, as

FIG. 13. Comparison of our ferromagnetic specific heat results
�thick lines� with the high-temperature J→0 behaviors �thin lines�
obtained from series expansion �Ref. 25�, for anisotropy coefficients
R=0.25, 0.50, 0.75, 1, 2, and � spanning the spin-liquid and Ising-
like regions.

FIG. 14. Comparison of our ferromagnetic specific heat results
�thick lines� with the results of Ref. 5 �dash-double-dotted line�,
Ref. 6 �dotted line�, Ref. 21 �dash-dotted lines�, Ref. 22 �open
circles�, and Refs. 23 and 24 �dashed lines�, for anisotropy coeffi-
cients R=0, 0.5, 1, 5

4 , 5
3 , 2, and 5 spanning the spin-liquid and

Ising-like regions.

FIG. 15. The calculated excitation spectrum gap � versus
anisotropy.
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seen in Fig. 7. Figure 18 directly compares C /T
=2	 / �3 sin 	� with our results: The curves have the same
basic form, gradually rising from R=−1, with a sharp diver-
gence as R nears 1. At R=1+, we expect C /T=0. Our T
=10−10 curve diverges at R=1 and indeed returns to zero at
R=1.000 000 1.

�iv� R�−1: We expect a vanishing C /T, which we do find
as seen in Fig. 16 and in the insets of Fig. 17. The exponen-
tial behavior of the specific heat is clearly seen in the Ising
limit.

VII. CONCLUSION

A detailed global renormalization-group solution of the
XXZ Heisenberg chain, for all temperatures and anisotropies,
for both ferromagnetic and antiferromagnetic couplings, has

been obtained. In the spin-liquid region, the linear low-
temperature specific heat and, for the antiferromagnetic
chain, the spin-wave dispersion relation exponent n and ve-
locity c have been obtained. In the Ising-like region, the
spin-wave to spinon crossover of the excitation spectrum gap
of the ferromagnetic chain has been obtained from the expo-
nential specific heat, as well as the correct leading algebraic
behaviors in the Heisenberg and Ising limits. Purely quantum
mechanical effects have been seen: We find that the xy cor-
relations and the antiferromagnetic z correlations mutually
reinforce each other, for different ranges of temperatures and
anisotropies, in ferromagnetic, antiferromagnetic, and XY
systems. The behaviors, with respect to anisotropy, of the
specific heat peak values and locations are opposite in the
ferromagnetic and antiferromagnetic systems. The sharp con-
trast found in the specific heats of the isotropic ferromagnetic
and antiferromagnetic systems is a harbinger of the different
critical temperatures in the respective three-dimensional sys-
tems. When compared with existing calculations in the vari-
ous regions of the global model, good quantitative agreement
is seen. Even at zero temperature, where our approximation
is at its worst, good quantitative agreement is seen with exact
data points for the correlation functions �Fig. 1�b��, which we
extend to all values of the anisotropy. Finally, the relative
ease with which the Suzuki-Takano decimation procedure is
globally and quantitatively implemented should be noted.
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FIG. 18. Calculated specific heat coefficient C /T as a function
of anisotropy coefficient R in the spin-liquid region, −1�R�1, at
constant temperature T=10−10. Our renormalization-group result
�gray curve� is compared to the zero-temperature Bethe-ansatz re-
sult �black curve�. Inset: our calculation �gray curve� at constant
T=10−2 is again compared to the zero-temperature Bethe-ansatz
result �black curve�.

FIG. 16. Calculated specific heat coefficient C /T as a function
of anisotropy R, for T=0.10, 0.05, 10−10.

FIG. 17. Calculated specific heat coefficient C /T as a function
of temperature for anisotropy coefficient R=−5 �thin gray line�, R
=−2 �thick gray line�, −1 �dotted line�, −0.5 �dash-dotted line�, 0.5
�dashed line�, and 2 �thin black line�.
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