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Cellular signaling involves the transmission of environmental information through cascades of stochastic
biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the
cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways
whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif
effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we
generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and
control engineering, to take nonlinear signal transduction and discrete molecule populations into account.
This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our
mathematical formalism yields bounds on filter performance in cases important to cellular function—such as
ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency,
encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a
large class of signal transduction networks, is also useful both for the design of synthetic biochemical
signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.
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I. INTRODUCTION

Extracting signals from time series corrupted by noise is
a challenge in a number of seemingly unrelated areas.
Minimizing the effects of noise is a critical consideration
in designing communication and navigation systems and
analyzing data in diverse fields such as medical and
astronomical imaging. More recently, a number of studies
have focused on how biological circuits, composed of
chemical signaling pathways mediated by genes, proteins,
and RNA, cope with noise [1]. One of the key discoveries in
the past decade is that the naturally occurring systems that
control all aspects of cellular processes undergo substantial
stochastic fluctuations in both their expression levels and
activities. Noise may even have a functional role [2],
providing coordination between multiple interacting
chemical partners in typical circuits. Because of the variety
of ways noise influences cellular functions, it is important
to develop a practical and general theoretical framework for
describing how biological systems cope with and control
the inevitable presence of noise arising from stochastic
fluctuations. In the context of communication theory, the
optimal noise-reduction filter, discovered independently by
Wiener [3] and Kolmogorov [4] in the 1940s, inaugurated

the modern era of signal processing, providing the first
general solution to the problem of extracting useful infor-
mation from corrupted signals. We show that this classic
result of wartime mathematics, developed to guide radar-
assisted antiaircraft guns, yields insights into the efficiency
limits of generic biochemical signaling networks.
Dealing with noise in biological signal transduction is at

first glance evenmore daunting than in engineered systems. In
order to survive, cells must process information about their
external environment [5–9], which is transmitted and ampli-
fied from stimulated receptors on the cell surface through
elaborate pathways of post-translational covalent modifica-
tions of proteins. A typical example is phosphorylation by
proteinkinasesof targetproteins,which thenbecomeactivated
to modify targets further downstream. Signaling occurs
through cascades involvingmultiple stages of such activation
[Fig. 1(a)]. Since each enzymatic reaction is stochastic, noise
inevitably propagates through the cascade, potentially cor-
rupting the signal [10,11]. Our work focuses on a basic
signaling circuit: a “push-pull loop” where a substrate is
activated by one enzyme (i.e., phosphorylation by a kinase)
and deactivated by another (i.e., dephosphorylation by a
phosphatase) [12–15] [Fig. 1(b)]. Since cascades have a
modular structure, formed through many such loops in series
and parallel, understanding the stochastic properties at the
single-loop level is a prerequisite to addressing the complex
behavior of entire pathways [16–18].
The push-pull loop can act like an amplifier, taking the

input signal—the time-varying population of kinase—and
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approximately reproducing it at larger amplitude through
the output—the population of active, phosphorylated sub-
strate [14]. Depending on the parameters, small changes in
the input can be translated into large (but noise-corrupted)
output variations. The amplification is essential for sensi-
tive response to external stimuli, but it must also preserve
signal content to be useful for downstream processes. Thus,
the signaling circuit, despite operating in a noisy environ-
ment, needs to maintain a high fidelity between output and
amplified input.
From a design perspective, the natural question that

arises is, what are the general constraints on filter effi-
ciency? Are there rigorous bounds, which depend only on
certain collective features of the underlying biochemical
network architecture? Discovering such bounds is impor-
tant both to explain the metabolic costs of noise suppres-
sion in biological systems [19] and also for bioengineering
purposes. In particular, for constructing synthetic signaling
networks, we would like to make the most efficient
communication pathway with a limited set of resources
(free-energy costs).
To answer these questions, using the enzymatic push-

pull loop as an example, we introduce a new mathematical
framework, inspired by the Wiener-Kolmogorov (WK)
theory for optimal noise filtration. The original WK theory
has restrictions that make it of limited utility in the
biological context—it assumes that the input and output
are continuous variables describing stationary stochastic
processes. More critically, the filter is assumed to be linear.

Exploiting the power of exact analytical techniques based
on umbral calculus [20], we overcome these limitations,
thus generalizing the WK approach. This crucial theoretical
development enables us to provide a rigorous solution to
the filter optimization problem, taking into account discrete
populations and nonlinearity. We can thus understand
constraints in biologically significant regimes of the
push-pull loop behavior, for example, highly nonlinear,
“ultrasensitive” amplification [13]. Our theory predicts that
optimality can be realized by tuning phosphatase levels,
which we verify through simulations of a microscopic
model of the loop reaction network, including cases where
the system is driven by an oscillatory input [21], which is
relevant to recent experimental probes [5,6]. The optimality
is robust, with the filter operating at near-optimal levels
even when the WK conditions are only approximately
fulfilled, over a broad range of realistic parameter values.
Although illustrated using a push-pull loop, the theory is
applicable to a large class of signaling networks, including
more complex features such as negative feedback or
multisite phosphorylation of substrates.

II. RESULTS AND DISCUSSION

A. Theoretical framework for a minimal
signaling circuit

To obtain the central results, we start with an example
that illustrates the efficacy of the WK theory and suggests a
way to a more detailed, realistic model of the enzymatic
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FIG. 1. Schematic of a signaling cascade. (a) A signaling pathway involving cascades of kinase phosphorylation, activated by a
receptor embedded in the cell membrane that responds to extracellular ligands. (b) A close-up of one enzymatic push-pull loop within
the cascade. Kinase (K) phosphorylates the substrate (S), converting it to active form (S�), while phosphatase (P) reverts it to the original
form through dephosphorylation. SK and S�P represent the substrate in complex with the kinase and phosphatase, respectively. The rate
parameters labeling the reaction arrows are described in the text. The input I ¼ K þ SK and output O ¼ S� þ S�P. (c) A minimal
signaling circuit, involving an input species I and output species O, related by the production rate function RðIÞ.
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push-pull loop. Consider a small portion of a signaling
pathway [Fig. 1(c)], involving two chemical species: one
with time-varying population IðtÞ (the “input”), and
another one with population OðtÞ (the “output”) whose
production depends on IðtÞ. These could be, for example,
the active, phosphorylated forms of two kinases within a
signaling cascade, with O downstream of I. The upstream
part of the pathway contributes an effective production rate
F for species I, which, in general, can be time dependent,
though for now we will make F constant. The output O is

produced by a reaction, I→
RðIÞ

I þO, with a rate R(IðtÞ) that
depends on the input. The species are deactivated with
respective rates γI and γO, mimicking the role of the
phosphatases. The input IðtÞ will vary over a characteristic
time scale γ−1I , fluctuating around the mean Ī ¼ F=γI .
The output deactivation rate sets the response time scale
γ−1O over which OðtÞ can react to changes in the input.
The dynamical equations, within a continuum, chemical
Langevin (CL) description [22], are given by

dI
dt

¼ F − γII þ nI;
dO
dt

¼ RðIÞ − γOOþ nO; ð1Þ

where the additive noise contribution nαðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2γαᾱ

p
ηαðtÞ,

with α ¼ I, O and ᾱ denoting the mean of population α.
The function ηαðtÞ is Gaussian white noise with correlation
hηαðtÞηα0 ðt0Þi ¼ δαα0δðt − t0Þ. The angle brackets denote an
average over the ensemble of all possible noise realizations.
For small deviations, δαðtÞ ¼ αðtÞ − ᾱ, from the mean

populations ᾱ, Eq. (1) can be solved using a linear
approximation, where we expand the rate function to
first order, R(IðtÞ) ≈ R0Ī þ R1δIðtÞ, with coefficients
R0, R1 > 0. (We will return later to the issues of non-
linearity and discrete populations.) The result is

δIðtÞ ¼
Z

t

−∞
dt0e−γIðt−t0ÞnIðt0Þ;

δOðtÞ ¼
Z

t

−∞
dt0

R1

G
e−γOðt−t0Þ

�
GδIðt0Þ þ G

R1

nOðt0Þ
�
; ð2Þ

where in the second line we introduce an arbitrary scaling
factor G > 0 (to be defined below) inside the brackets, and
divided through by G outside the brackets. The solution for
δOðtÞ has the structure of a linear noise-filter equation:
~sðtÞ ¼ R

t
−∞ dt0Hðt − t0Þcðt0Þ, with cðtÞ ¼ sðtÞ þ nðtÞ. In

this analogy, we have a signal sðtÞ≡GδIðtÞ together with
a noise term nðtÞ≡GR−1nOðtÞ forming a corrupted signal
cðtÞ. The output ~sðtÞ≡ δOðtÞ is produced by convolving
cðtÞwith a linear filter kernelHðtÞ≡ R1G−1 expð−γOtÞ. As
a consequence of causality, the integrals in Eq. (2) run over
t0 < t, so the filtered output ~sðtÞ at any time t depends only
on cðt0Þ from the past.
The utility of mapping the push-pull system onto a noise

filter comes from the application of WK theory, which is

designed to solve a key optimization problem: out of all
possible causal, linear filters HðtÞ, what is the optimal
function HWKðtÞ that minimizes the differences between
the output ~sðtÞ and input sðtÞ time series? In our example,
this means having δOðtÞ reproduce as accurately as
possible the scaled input signal GδIðtÞ. Specifically, we
would like to minimize the relative mean-squared error
E ¼ hð~s − sÞ2i=hs2i. For a particular δIðtÞ and δOðtÞ, the
value of E is smallest when G ¼ hðδOÞ2i=hδOδIi, which
we use to define the gain G. In this case, E reduces to
E ¼ 1 − hδOδIi2=½hðδOÞ2ihðδIÞ2i�. The great achievement
of Wiener [3] and Kolmogorov [4] was to show that HWK
satisfies the following Wiener-Hopf equation:

CcsðtÞ ¼
Z

t

−∞
dt0HWKðt − t0ÞCccðt0Þ; t > 0; ð3Þ

where CxyðtÞ≡ hxðt0Þyðt0 þ tÞi is the correlation between
points in time series x and y, assumed to depend only on the
time difference t. Given Ccs and Ccc, which are properties
of the signal sðtÞ and noise nðtÞ, it is possible to solve
Eq. (3) for HWK. The corresponding minimum value of the
error E is

EWK ¼ 1 −
1

Cssð0Þ
Z

∞

0

dtHWKðtÞCcsðtÞ: ð4Þ

The solution of the Wiener-Hopf equation requires the
following correlation functions, which can be derived
from Eq. (2): CssðtÞ ¼ CcsðtÞ ¼ G2Ī expð−γIjtjÞ, CnnðtÞ ¼
2G2ĪδðtÞ=ðγIΛÞ, and CccðtÞ ¼ CssðtÞ þ CnnðtÞ, where the
parameter Λ≡ R2

1=ðR0γIÞ. Plugging these into Eq. (3), we
can solve for the optimal filter function by assuming a
generic ansatz HWKðtÞ ¼

P
N
i¼1 Ai expð−λitÞ, finding the

unknown coefficients Ai and rate constants λi by comparing
the left-hand and right-hand sides of the equation. In our
case, a single exponential (N ¼ 1) is sufficient to exactly
satisfy Eq. (3) (see details in Appendix A), and we get
HWKðtÞ ¼ γIð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
− 1Þ expð−γI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
tÞ. The condi-

tions for achieving WK optimality, HðtÞ ¼ HWKðtÞ, are
then

γO ¼ γI
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
; G ¼ R1

γIð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
− 1Þ : ð5Þ

From Eq. (4), the minimum relative error is

EWK ¼ 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p : ð6Þ

The fidelity between output and input is described
through a single dimensionless optimality control
parameter Λ. It can be broken up into two multiplicative
factors, reflecting two physical contributions: Λ ¼
ðR0=γIÞðR1=R0Þ2. The first term, R0=γI, is a burst
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factor, measuring the mean number of output molecules
produced per input molecule during the active lifetime of
the input molecule. The second term, ðR1=R0Þ2, is a
sensitivity factor, reflecting the local response of the
production function RðIÞ near Ī [controlled by the slope
R1 ¼ R0ðĪÞ] relative to the production rate per input
molecule: R0 ¼ RðĪÞ=Ī. Note that ðR1=R0Þ2 > 1 only if
RðIÞ is globally nonlinear, since physical production
functions satisfy RðIÞ ≥ 0 for all I ≥ 0. If RðIÞ is perfectly
linear, RðIÞ ¼ R0I, then R1 ¼ R0, and ðR1=R0Þ2 ¼ 1.
Thus, the limit of efficient noise suppression, Λ ≫ 1,
where EWK becomes small, can be achieved by making
the burst factor R0=γI ≫ 1 and/or enhancing the sensitivity
ðR1=R0Þ2 ≫ 1, at the cost of introducing nonlinear effects
(discussed in detail below). For optimality to be realized,
we additionally need an appropriate separation of scales
[Eq. (5)] between the characteristic time of variations in the
input signal γ−1I and the response time of the output γ−1O .
The latter should be faster by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
. The

scaling EWK ∼ Λ−1=2 for large Λ is the same as the burst-
factor scaling of the target population variance in bio-
chemical negative feedback networks intended to maintain
homeostasis and suppress fluctuations [19]. The slow Λ−1=2

decay in both cases, compared to the more typical scaling
of variance with Λ−1 (inversely proportional to the number
of signaling molecules produced), reflects the same under-
lying physical challenge: the difficulty of suppressing or
filtering noise in stochastic reaction networks.
The error E defined above is based on the instantaneous

difference between the input sðtÞ and output ~sðtÞ time
series. One of the powerful features of the WK formalism is
that it naturally extends error minimization to cases where
the goal is extrapolating the future signal, where we seek
to minimize the difference between ~sðtÞ and sðtþ αÞ for
some α > 0 [23]. Given the time delays inherent in many
biological responses, particularly, where feedback is
involved, such predictive noise filtering has significant
applications [24], which we will explore in subsequent
work. For now, we confine ourselves to the instantaneous
error, which is sufficient to treat the kinase-phosphatase
push-pull loop.
We also note that there is no unique measure of signal

fidelity. Besides E, one can optimize the mutual informa-
tion between the output and input species in the cascade
[17]. For example, in the two-component cascade with
nonlinear regulation, considered below, a spectral expan-
sion of the master equation allows for efficient numerical
optimization of the system parameters for particular
forms of the rate function, maximizing the mutual
information [25,26].

B. Effects of nonlinearity and discrete populations

For the subclass of Gaussian-distributed signal sðtÞ and
noise nðtÞ time series (as is the case within the CL picture),

the WK filter derived above, based on the linearization of
the CL, is optimal among all possible linear or nonlinear
filters [23]. If the system fluctuates around a single stable
state, and the copy numbers of the species are large enough
that their Poisson distributions converge to Gaussians
(mean populations ≳10), the signal and noise are usually
approximately Gaussian. However, the rate function RðIÞ
will never be perfectly linear in practice, and thus, one
needs to consider how nonlinearities in RðIÞ will affect the
minimal E. In addition, the discrete nature of population
changes, which becomes important at lower copy numbers,
has to be explicitly taken into consideration. Surprisingly,
the WK result of Eq. (6) can be generalized even to cases
where the linear, continuum assumptions underlying WK
theory no longer hold.
Starting from the exact master equation, valid for

discrete populations and arbitrary RðIÞ, we rigorously solve
the general optimization problem for the error E between
output and input using the principles of umbral calculus
[20]. The detailed proof is in Appendix B, but the main
results are as follows. Any function RðIÞ can be expanded
in terms of a set of polynomials vnðIÞ as RðIÞ ¼P∞

n¼0 σnvnðIÞ. The vnðIÞ are polynomials of degree n,
given by

vnðIÞ ¼
Xn
m¼0

ðn −mÞ!ð−ĪÞm
�

n

m

��
I

n −m

�
; ð7Þ

and the coefficients σn are related to moments of RðIÞ,
σn ¼ hvnðIÞRðIÞi=ðĪnn!Þ. The average is taken with
respect to the Poisson distribution PðIÞ ¼ ĪI expð−ĪÞ=I!.
The first two polynomials are v0 ¼ 1 and v1 ¼ I − Ī, giving
σ0 ¼ hRðIÞi and σ1 ¼ hðI − ĪÞRðIÞi=Ī. Remarkably, the
relative error E has an exact analytical form in terms of
the σn,

E ¼ 1 −
Īγ2Oσ

2
1

ðγI þ γOÞ2
�
γOσ0 þ

X∞
n¼1

σ2n
γOn!Īn

γO þ nγI

�−1
: ð8Þ

This expression is bounded from below by

E ≥ Eopt ≡ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p ; ð9Þ

where ~Λ ¼ Īσ21=ðσ0γIÞ. The equality is reached only when

γO ¼ γI
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p
and RðIÞ has an optimal linear form,

RoptðIÞ ¼ σ0 þ σ1ðI − ĪÞ, with all σn ¼ 0 for n ≥ 2. In this

optimal case, σ0 ¼ R0Ī and σ1 ¼ R1, and hence, ~Λ ¼ Λ,
E ¼ Eopt ¼ EWK from Eq. (6).
Making ~Λ large, for example, by increasing σ1, is

desirable for better signal transduction, but with a caveat.
We can keep E near Eopt even for a globally nonlinear RðIÞ
so long as RðIÞ remains approximately linear in the vicinity
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of the mean Ī, and the nonlinear corrections σn for n ≥ 2
are negligible. Large σ1 can be achieved through a highly
sigmoidal input-output response, known as ultrasensitivity,
which is biologically realizable in certain regimes of
signaling cascades [13]. However, our theory predicts that
as RðIÞ goes to the extreme limit of a steplike profile
around Ī, E should become significantly higher than Eopt,
and the benefits of ultrasensitivity vanish. The reason for
this is that letting σ1 become arbitrarily large (making the
step sharper) necessarily implies that RðIÞ eventually
deviates substantially from RoptðIÞ. We know that any
physically sensible RðIÞ satisfies the constraint RðIÞ ≥ 0
for I ≥ 0. If σ1 ≫ σ0=Ī and σn ≈ 0 for n ≥ 2, the function
RðIÞ would be negative for I ≲ Ī − σ0=σ1, violating the
physical constraint. Hence, the coefficients σn for n ≥ 2
must be non-negligible when σ1 is sufficiently large,
leading to E > Eopt.
We can illustrate this result numerically for RðIÞ that

have the form of a Hill function, RðIÞ ¼ RsðI=I0ÞnH=
½1þ ðI=I0ÞnH �, defined by the three parameters Rs, I0,
and nH. This represents a typical sigmoidal behavior
in biochemical systems, with a small production rate for
I ≪ I0 switching over to a saturation level Rs for I ≫ I0.
We perform a numerical minimization of E [evaluated
using Eq. (8)] over the parameter space, at fixed F, γI, σ0,
and ~Λ. Using Eq. (8) is numerically extremely efficient,
since the coefficients σn typically decay quite rapidly,
allowing the infinite sum to converge after a small (less
than 10) number of terms. Fixing σ0 and ~Λ is equivalent to
specifying the first two moments of RðIÞ, which in turn
defines a curve in the three-dimensional parameter space of
Rs, I0, and nH. After numerically solving for this curve, the
minimization procedure consists of searching along the
curve (and varying the free system parameter γO) to find
the parameter set that yields the smallest E. Figure 2(a)
shows optimization results for F ¼ 1 s−1, γI ¼ 0.01 s−1,
σ0 ¼ 100 s−1, and varying ~Λ, with the optimal Hill
function RðIÞ (the one with smallest E) at each ~Λ drawn
in a different color. The corresponding minimal values of E
are shown in Fig. 2(b) as circles in the same colors, with
Eopt using Eq. (9) drawn as a blue curve for comparison.

Larger values of ~Λ have optimal RðIÞ profiles that are
increasingly steplike, with steeper slopes near Ī. For the
range ~Λ ¼ 102–103, the maximum slope (≈σ1) is still small
enough that RðIÞ remains approximately linear across the
entire I range, where PðIÞ is non-negligible [the distribu-
tion is superimposed in Fig. 2(a)]. Hence, minimal E values
are very close to Eopt, decreasing with ~Λ. The ratios γO=γI
at which these minimal E values occur, shown in Fig. 2(c),

are nearly equal to the predicted value
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p
(blue

curve). We can estimate that this near optimality will persist
up to σ1 ≈ σ0=ð3

ffiffī
I

p
Þ, since that is roughly the slope of an

RðIÞ that rises from zero near the left edge of PðIÞ (at

(a)

(b)

(c)

FIG. 2. Optimal noise reduction in the minimal signaling
circuit [Fig. 1(c)]. (a) Numerical optimization results for the
Hill production function RðIÞ that minimizes relative error E
between input and output, with each color corresponding to
different values of the parameter ~Λ ¼ 102–104 (see text for other
parameters). The input probability distribution PðIÞ is super-
imposed in black (the height scale is arbitrary). (b) For each
value of ~Λ from (a), circles show the minimal E. The lower bound
Eopt [Eq. (9)] is drawn as a blue curve. (c) Analogous to (b),
but showing the ratio γO=γI at which the minimum E is achieved.
The blue curve shows the WK prediction for this ratio,
γO=γI ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p
.
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I ≈ Ī − 3
ffiffī
I

p
) to a value of σ0 at I ¼ Ī. For σ1 ≳ σ0=ð3

ffiffī
I

p
Þ,

or equivalently ~Λ≳ σ0=ð9γIÞ ¼ 1.1 × 103, the nonlinearity
of RðIÞ becomes appreciable around Ī, distorting the output
signal and leading to minimal E noticeably larger than Eopt,

and actually increasing with ~Λ. Thus, moving toward the
ultrasensitive limit ~Λ → ∞ is initially beneficial for noise
filtering, but only up to a point: RðIÞ does not have to be
globally linear, but local linearity of RðIÞ near Ī, which can
be satisfied readily, is best for accurate signal transduction.

C. Enzymatic push-pull loop acts
as an optimal WK filter

The system considered so far is the simplest realization
of a signaling circuit, in the sense that it involves only
two species, related through a single phenomenological
production function RðIÞ. In reality, an enzymatic push-
pull loop involves intermediates—complexes of the
substrate with the kinase or phosphatase—whose binding,
unbinding, and catalytic reactions all contribute to the
stochastic nature of signal transmission. Can the WK
theoretical framework be used to describe optimality in
this complicated context? Let us consider a more micro-
scopic model of the loop reaction network [Fig. 1(b)]. The
active kinase is either free (K) or bound to substrate (SK).
The input I is defined as the total active kinase population
I ¼ K þ SK. Upstream modules control kinase activation
and deactivation, described by rates F and γK , respectively.

The kinase can phosphorylate the substrate, converting it
from inactive (S) to active (S�) form. Analogously, in the
reverse direction, free phosphatases (P) form complexes
with the active substrate (S�P), which lead to dephosphor-
ylation, returning the substrate to inactive form. The output
O is the total active substrate populationO ¼ S� þ S�P. The
reactions for substrate modification, with corresponding
rate constants, are

K þ S⇌
κb

κu
SK→

κr K þ S�;

Pþ S�⇌
ρb

ρu
S�P→

ρr Pþ S: ð10Þ

We choose representative rate values based on a model
of the mitogen-activated protein kinase cascade [27] (all
units are in s−1): κb ¼ ρb ¼ 10−5, κu ¼ 0.02, ρu ¼ 0.5,
κr ¼ 3, ρr ¼ 0.3, F ¼ 1. The rate γK in the model controls
the characteristic time scale over which the input signal
varies. We let γK ¼ 0.01 s−1, which sets this scale to
minutes. Mean free substrate and phosphatase populations
(which together with the rates determine all equilibrium
population values) are in the ranges S̄ ∼ 104–105, P̄ ∼
103–106 molecules/cell.
We simulate the dynamics of this system numerically

using the kinetic Monte Carlo (KMC) method [28], with
sample input and output trajectories shown in Figs. 3(d)–
3(f) for S̄ ¼ 8 × 104 and three values of P̄. As the free
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FIG. 3. (a) γO (solid curve) and γI
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p
(dashed curves), based on the mapping in Eq. (11), for Λ ¼ 100. The P̄ value at the

intersection of the solid and dashed curves, where the WK optimality conditions are fulfilled, is indicated by a diamond. (b) Gain G
(solid line, CL theory; circles, KMC simulations) for the same Λ value as in (a), versus the WK optimal value for G (dashed line) given
by Eq. (5). (c) Same as (b), but showing error E versus the WK optimal prediction EWK (dashed line) from Eq. (6). (d)–(f) Sample
trajectories for the scaled inputGδIðtÞ (blue curve) and the output δOðtÞ (purple curve) from KMC simulations of the push-pull loop, for
Λ ¼ 100 (S̄ ¼ 8 × 104) and three different values of P̄. These P̄ values are marked by red triangles under (c) and correspond to cases
where, relative to the input, the output is too smooth (d), optimal (e), and too noisy (f). (g)–(i) Power spectral densities of the scaled input
GδIðtÞ (blue curve) and the output δOðtÞ (purple curve) for the three cases shown in (d)–(f).
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phosphatase population is varied, we see different degrees
of signal fidelity, with the closest match between δOðtÞ and
GδIðtÞ for the intermediate case in Fig. 3(e). Are we seeing
behavior similar to an optimal WK filter? As detailed in
Appendix C, we can approximately map the phosphoryla-
tion cycle to a noise filter using the same method as in our
first example: starting from the full dynamical equations in
the linear CL approximation, we derive the correlation
functions required to solve the Wiener-Hopf relation,
Eq. (3). The effective parameters resulting from the map-
ping are

γO ¼ ρrρþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρrρþ

p ; R1 ¼
κrκþρ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρrρþ

p ;

γI ¼
κ−γK
κ

; Λ ¼ κrκþκ2ρ2

γKκ−½ρ2ðκ2 − κrκþÞ − ρrρþκ2�
; ð11Þ

where κþ ¼ κbS̄, κ− ¼ κu þ κr, κ ¼ κþ þ κ−, ρþ ¼ ρbP̄,
ρ− ¼ ρu þ ρr, and ρ ¼ ρþ þ ρ−. Equation (11) is valid in
the regime K̄ ¼ F=γK ≪ S̄, P̄, with corrections of order
K̄=S̄ and K̄=P̄ shown in Appendix C. Such a mapping
allows us to useWK results in Eqs. (5) and (6) to predict the
conditions for optimality and the minimal possible E.
Figures 3(a) and 3(b) show the left-hand (solid lines)
and right-hand (dashed lines) sides of both conditions in
Eq. (5) as a function of P̄ for Λ ¼ 100 (S̄ ¼ 8 × 104). The P̄
value at the intersections, where the conditions are fulfilled,
is marked by a diamond. Figure 3(c) shows that exactly at
this value E achieves a minimum, given by EWK from
Eq. (6) (dashed line). The CL approximation (solid curves)
and KMC simulations (circles) are in excellent agreement.
Thus, the phosphorylation cycle can indeed be tuned to
behave like an optimal WK noise filter, even for a realistic
signaling model. In light of the mapping in Eq. (11),
we now understand the behavior of the trajectories in
Fig. 3(d)–3(f), which correspond to Λ ¼ 100. In Fig. 3(d),
where P̄ ¼ 2.5 × 103, we have γO ≪ γI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
[Fig. 3(a)],

and the output δOðtÞ becomes excessively smooth, since
it cannot respond quickly enough to changes in the input
signal GδIðtÞ. The corresponding power spectral density
(PSD) of the output, shown in Fig. 3(g), is smaller at high
frequencies compared to the PSD of the input. In Fig. 3(f),
we have the opposite situation of γO ≫ γI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
at

P̄ ¼ 2.5 × 105. The output response is too rapid, generating
additional noise that obscures the signal. In this case, the
output PSD [Fig. 3(i)] has an extra high-frequency con-
tribution relative to the input PSD. Figure 3(e) represents
the optimal intermediate P̄ ¼ 2.5 × 104, where γO ¼
γI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
and the WK conditions are fulfilled. The input

and output PSDs [Fig. 3(h)] are similar at all frequencies.
The minimum of E in Fig. 3(c) is shallow, meaning that

near-optimal filtering persists even when the phosphatase
population is not precisely tuned to the WK condition.
For P̄ values that vary nearly fivefold between

P̄ ¼ ð1.3–6.3Þ × 104, the error E remains within 5% of
the minimum value EWK. Another aspect of the filter’s
robustness can be highlighted by perturbing the enzymatic
parameters κb, ρb, κu, ρu, κr, and ρr. If we randomly vary all
these parameters within a range between 0.1 and 10 times
the values listed above after Eq. (10), and calculate the
resulting conditions for WK optimality [Eq. (5)] for each
new parameter set, we obtain the results in Fig. 4. For a
given P̄, the shaded intervals in the figure correspond to the
68% confidence intervals on the input kinase frequency
scale γK and the mean substrate population S̄ at optimality.
Thus, for a broad range of biologically relevant enzymatic
parameters, we get a sense of how the populations of P̄ and
S̄must complement each other and an associated time scale
γ−1K reflecting how quickly the input signal can vary and still
be accurately transduced. From the trends in Fig. 4, we see
that to get the system to respond to more rapidly varying
signals, we need larger populations of P̄ and S̄. As a
concrete example, for the hyperosmolar glycerol (HOG)
signaling pathway in yeast, which we discuss in the next
section, kinase substrates have cell copy numbers of
between 6 × 101 and 7 × 103, while the tyrosine protein
and type 2C protein phosphatases that have been identified
as targeting the pathway are present in cell copy numbers
between 1.5 × 102 and 2 × 104 [29]. Using these popula-
tion scales as a rough guide for S̄ and P̄ (ignoring
complications such as multiple phosphorylation steps
and sharing of phosphatases between different pathways),
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FIG. 4. Conditions for WK optimality as the enzymatic push-
pull loop parameters are varied. (a) The solid blue curve shows
the relation between mean phosphatase population P̄ and the
characteristic frequency scale γK over which the active kinase
input signal varies. This is at WK optimality [Eq. (5)], using the
mapping of Eq. (11) and the parameter values κb, ρb, κu, ρu, κr, ρr
listed in the text after Eq. (10). The shaded region between the
dashed curves shows the 68% confidence interval for achieving
WK optimality, resulting from randomly perturbing all the
parameter values so that they can be up to tenfold smaller or
larger. (b) Analogous to (a), but showing the relation between P̄
and substrate population S̄ at WK optimality.
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we see from Fig. 4 that the corresponding
γK ∼ 10−4–10−2 s−1. This range of optimal time scales is
consistent with the experimental observation that the HOG
pathway can faithfully transduce osmolyte signals at
frequencies ≲5 × 10−3 s−1 [5].

D. Noise filtration in a push-pull loop driven
by oscillatory input

Remarkably, since Eq. (11) is independent of F, the
system can serve as an optimal filter for a range of F values,

so long as the condition F=γK ≪ S̄, P̄ is satisfied. This
regime, involving saturated kinases and unsaturated phos-
phatases, has previously been identified as a candidate for
efficient signal transmission by Gomez-Uribe et al. [18].
To check the filter operation with varying upstream flux,
we used a time-dependent FðtÞ, driving the system with
oscillatory input. This is motivated by microfluidic exper-
imental setups [5,6], where the HOG pathway of yeast was
probed by exposing the cells to periodic osmolyte pulses.
In the experiments, the input signal is the extracellular
osmolyte concentration and the output is the degree to
which the activated kinase Hog1 localizes in the nucleus,
where it initiates a transcriptional response to the osmolar
shock. Though the biochemical network relating the output
to input consists of a complex series of enzymatic push-pull
loops, the overall behavior is quantified through response
functions in terms of input signal frequency [5], related to
the Fourier transforms of the input-output correlation
functions. Such correlation functions are the basic ingre-
dients in assessing filter optimality in the WK theory.
Here, we focus only on a single push-pull loop and use
input at varying frequencies to determine whether EWK
remains a meaningful constraint on filter performance
even for nonstationary signals. In Fig. 5(a), we show a
sample IðtÞ and OðtÞ KMC trajectory at optimality for
FðtÞ ¼ F̄½1þ A sinð2πt=TÞ�, with F̄ ¼ 1 s−1, A ¼ 0.5, and
T ¼ 5000 s. The input has two characteristic time scales,
T and γ−1I ¼ 102 s. For T ≫ γ−1I , we define relative error in
terms of deviations from local, time-dependent means: Eloc

defined using δIloc¼IðtÞ− ĪlocðtÞ and δOloc¼OðtÞ−ŌlocðtÞ
[Fig. 5(b)], where ĪlocðtÞ ¼ ĪFðtÞ=F̄, ŌlocðtÞ ¼ ŌFðtÞ=F̄
are shown as dashed curves in Fig. 5(a). Figure 5(c) shows
KMC results for minimum E and minimum Eloc as a
function of T for a system tuned to optimality with Λ ¼ 10.
The values of P̄ at which these minima are achieved are
shown in Fig. 5(e). At T > γ−1I , we find Eloc < E, since
both the input and output have time to adjust to the slowly
varying local means. In fact, the minimum Eloc approaches
EWK for T ≫ γ−1I , as optimality is unaffected by the
slow oscillation in FðtÞ. The P̄ where the minimum Eloc
occurs also approaches the value predicted by WK theory
[Fig. 5(e)]. The filter transduces the signal with high
fidelity. In the opposite limit of small T < γ−1I , the rapidly
varying FðtÞ essentially averages out, since neither the
input nor the output have time to respond to the sharp
changes in FðtÞ. Thus, the system sees an effective constant
flux F̄. Here, E, the error estimate with respect to the
global mean, is more relevant than Eloc. In this regime, the
minimum E < Eloc, E approaches EWK for T ≪ γ−1I , and
the P̄ value where E is minimized agrees with the WK
prediction.
The two regimes in system behavior, with a changeover

at the time scale γ−1I , reflect the fact that the enzymatic loop
acts as an effective low-pass filter [6,14]: it can accurately
transmit the low-frequency component of FðtÞ, but
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FIG. 5. (a) Sample KMC simulation trajectories for IðtÞ (solid
blue) and OðtÞ (solid purple) in a Λ ¼ 10 system driven by an
oscillatory upstream flux FðtÞ (see text for parameters). Dashed
lines are local means IlocðtÞ andOlocðtÞ. (b) For trajectories in (a),
the deviations from local means, δIlocðtÞ (blue) and δOlocðtÞ
(purple). (c)–(e) Results calculated from KMC simulations for a
system with Λ ¼ 10 and oscillatory FðtÞ at varying driving
periods T. γ−1I is marked by a vertical dashed line. (c) The
minimum errors E (circles) and Eloc (squares). EWK is marked by
a horizontal dashed line. (d) The minimum local coefficient of
variation CVloc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδOloc=ŌlocÞ2i

p
. (e) The mean phosphatase

population values P̄ at which the minima shown in (c) and (d) are
achieved (E, circles; Eloc, squares; CVloc, crosses). The P̄ value
for WK optimality is marked by a horizontal dashed line.
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integrates over the high-frequency portion above a certain
bandwidth. The overall bandwidth of a cascade of push-
pull loops has been experimentally characterized for the
yeast HOG pathway, yielding a value of ωb ≈ 5 × 10−3 s−1

[6]. Using this as a rough estimate of the bandwidth scale γI
in individual loops, we could expect to see a changeover
between the two regimes depending on whether the driving
frequency is much slower or faster than ωb. Regardless of
the magnitude of the driving frequency, both E and Eloc
always remain greater than EWK, so the latter remains a
bound on noise-filter efficiency even for dynamic input.
More generally, the low-pass filtering property of the

enzymatic loop can be fine-tuned to optimize other signal
transmission characteristics besides E and Eloc. These two
errors are minimized when the output fluctuations (δO or
δOloc) closely follow the scaled input fluctuations (GδI or
GδIloc). However, one could imagine biological scenarios
where the desired outcome was a smoothed output that
mirrored the oscillatory driving signal. In other words, we
could demand thatOðtÞ, as shown, for example, in Fig. 5(a)
(purple trajectory), deviates minimally from the oscillatory
local mean ŌlocðtÞ (superimposed dashed line). In this case,
the natural quantity to minimize would be a local coef-
ficient of variation, CVloc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδOloc=ŌlocÞ2i

p
. From the

oscillatory KMC simulations described above, we calculate
CVloc, and find that it can be made small in the slow
oscillation regime T ≫ γ−1I , as shown in Fig. 5(d), which
plots the minimum CVloc as a function of T for T ≥ 500 s.
From Fig. 5(e), which shows the P̄ values at which the
minimum CVloc occurs (crosses), we see that in the large T
limit this P̄ value is smaller than the WK prediction. This
makes sense, since as we know from the case of a constant
driving function (T → ∞), illustrated in Fig. 3(d), that
keeping P̄ below the WK optimum smooths the output. For
systems more complex than the enzymatic loop, smoothed
output (homeostasis around a constant mean, or tracking of
a driven, time-varying local mean) can be enhanced by
introducing some negative feedback mechanism from the
output back to the input [19]. For such negative feedback
systems, it turns out that there exists a mapping onto a
different WK filter [30].

III. CONCLUSIONS

We demonstrate the usefulness of a generalized WK filter
theory as a way of characterizing signal fidelity in an
enzymatic push-pull loop. This basic motif of biological
signal transduction can effectively realize an optimal WK
noise filter. Through a novel analytical approach, we general-
ize WK ideas beyond their original linear context, thus
providing fidelity bounds in strongly nonlinear cases, includ-
ing ultrasensitive production and oscillatory input driving.
Even for a complex kinase-phosphatase reaction network
withmultiple intermediates, the theory predicts the conditions
for accurate signal transduction, yielding a bound on the error

in terms of a single dimensionless optimality control param-
eter Λ. The results highlight how physics and engineering
concepts can be use to understand how biology robustly tunes
push-pull loops to optimality by setting the copy numbers of
phosphatase and substrate molecules. We can relate the wide
range of cellular signaling protein copy numbers observed
experimentally to optimal time scales on which the cell can
accurately transduce the signal, and thus yield an effective
physiological response. Since our approach is formulated in
terms of correlation functions of signal and noise, quantities
readily accessible from both theory and simulation, the
current work can be generalized to other complex signaling
networks. The ultimate goal is to give insights into the design
principles underlying the large, intertwined biochemical
pathways that determine how the cell can process and respond
to diverse sources of external stimuli.
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APPENDIX A: SOLVING THE WIENER-HOPF
EQUATION FOR THE OPTIMAL FILTER

Given the correlation functions,

CssðtÞ ¼ CcsðtÞ ¼ G2Īe−γI jtj; CnnðtÞ ¼
2G2Ī
γIΛ

δðtÞ;

CccðtÞ ¼ CssðtÞ þ CnnðtÞ; ðA1Þ

we would like to find the optimal filter function HWKðtÞ
that satisfies the Wiener-Hopf equation,

CcsðtÞ ¼
Z

t

−∞
dt0HWKðt − t0ÞCccðt0Þ; t > 0: ðA2Þ

Since CcsðtÞ and CccðtÞ consist of exponential terms and
Dirac delta functions, a reasonable ansatz for HWKðtÞ is a
sum of N exponentials,HWKðtÞ ¼

P
N
i¼1 Ai expð−λitÞ, with

parameters Ai, λi, i ¼ 1;…; N. Plugging this into Eq. (A2),
along with the correlation functions from Eq. (A1), and
carrying out the integral, we find

G2Īe−γI t ¼
XN
i¼1

Ai

��
2G2ĪγI
γ2I − λ2i

þ 2G2Ī
γIΛ

�
e−λit

þ G2Ī
λi − γI

e−γI t
�
; t > 0: ðA3Þ

Comparing the left-hand and right-hand sides of Eq. (A3),
we see that the coefficients of the linearly independent
exponential terms on both sides must match, giving N þ 1
equations: N coefficients of expð−λitÞ, plus one for
expð−γItÞ. Since there are 2N unknown parameters in
the ansatz, the only value of N that gives a closed set of
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equations is N ¼ 1. With this choice ofN, the resulting two
equations are

0 ¼ A1

�
2G2ĪγI
γ2I − λ21

þ 2G2Ī
γIΛ

�
; G2Ī ¼ A1G2Ī

λ1 − γI
: ðA4Þ

The only physically sensible solution of Eq. (A4) for A1

and λ1 [where jHWKðtÞj ≠ ∞ as t → ∞] is

A1 ¼ γI
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ
p

− 1
�
; λ1 ¼ γI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
: ðA5Þ

Thus, the optimal filter is

HWKðtÞ ¼ γI
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ
p

− 1
�
e−γI

ffiffiffiffiffiffiffi
1þΛ

p
t: ðA6Þ

APPENDIX B: OPTIMAL SIGNAL
TRANSDUCTION FOR THE NONLINEAR,

DISCRETE CASE

To obtain results for the general signal pathway model,
where we assume neither linearity of the production
function RðIÞ nor a continuum description, we start with
an exact equation for the stationary joint distribution
PðI; OÞ of the input and output. Using this, we will derive
expressions for various moments of the distribution that
enter into the relative mean-squared error

E ¼ 1 −
hδOδIi2

hðδOÞ2ihðδIÞ2i

¼ 1 −
ðhOIi − hOihIiÞ2

ðhO2i − hOi2ÞðhI2i − hIi2Þ : ðB1Þ

From the master equation, PðI; OÞ satisfies

γI½ðI þ 1ÞPðI þ 1; OÞ − IPðI; OÞ�
þ F½PðI − 1; OÞ − PðI; OÞ�
þ γO½ðOþ 1ÞPðI; Oþ 1Þ −OPðI; OÞ�
þ RðIÞ½PðI; O − 1Þ − PðI; OÞ� ¼ 0: ðB2Þ

We define a generating function HIðzÞ ¼P∞
O¼0 z

OPðI; OÞ. By multiplying Eq. (B2) by zO and then
summing over O, we derive the following equation for
HIðzÞ:

γI½ðI þ 1ÞHIþ1ðzÞ − IHIðzÞ� þ F½HI−1ðzÞ −HIðzÞ�
þ γOð1 − zÞH0

IðzÞ þ RðIÞðz − 1ÞHIðzÞ ¼ 0: ðB3Þ

Plugging in z ¼ 1, Eq. (B3) can be solved for
HIð1Þ ¼ PðIÞ, the marginal probability distribution of
the input. The result is PðIÞ ¼ ðF=γIÞI expð−F=γIÞ=I!,

the Poisson distribution. This implies that the first and
second input moments are given by

hIi ¼ F
γI

≡ Ī; hI2i ¼ F2

γ2I
þ F
γI

¼ Ī2 þ Ī: ðB4Þ

Moments involving the output O can be obtained by
manipulation of Eq. (B3). Taking its first derivative with
respect to z, and then setting z ¼ 1, we find

γI½ðI þ 1ÞH0
Iþ1ð1Þ − IH0

Ið1Þ� þ F½H0
I−1ð1Þ −H0

Ið1Þ�
− γOH0

Ið1Þ þ RðIÞHIð1Þ ¼ 0: ðB5Þ

Similarly, taking the second derivative of Eq. (B3) with
respect to z, and setting z ¼ 1, gives

γI½ðI þ 1ÞH00
Iþ1ð1Þ − IH00

I ð1Þ� þ F½H00
I−1ð1Þ −H00

I ð1Þ�
− 2γOH00

I ð1Þ þ 2RðIÞH0
Ið1Þ ¼ 0: ðB6Þ

From the definition of the generating function, H0
Ið1Þ ¼P∞

O¼0OPðI; OÞ and H00
I ð1Þ ¼

P∞
O¼0OðO − 1ÞPðI; OÞ.

Summing Eqs. (B5) and (B6) over all I yields the following
moment relations:

X∞
I¼0

H0
Ið1Þ ¼ γ−1O

X∞
I¼0

RðIÞHIð1Þ

⇒ hOi ¼ γ−1O hRðIÞi;
X∞
I¼0

H00
I ð1Þ ¼ γ−1O

X∞
I¼0

RðIÞH0
Ið1Þ

⇒ hO2i − hOi ¼ γ−1O hORðIÞi: ðB7Þ

Evaluating hOi involves finding the mean of RðIÞ over the
known input distribution HIð1Þ ¼ PðIÞ. However, finding
hO2i involves the unknown distribution H0

Ið1Þ. Moreover,
the last remaining moment in Eq. (B1) for the mean-
squared error, hOIi, can also be expressed in terms of this
distribution, hOIi ¼ P∞

I¼0 IH
0
Ið1Þ. Thus, it is crucial to

have additional information about H0
Ið1Þ.

We know that H0
Ið1Þ satisfies Eq. (B5), and we

assume an ansatz for H0
Ið1Þ of the form H0

Ið1Þ ¼
γ−1O HIð1ÞGðIÞ for some function GðIÞ. Plugging this into
Eq. (B5), and using the fact that HIð1Þ is the Poisson
distribution, we find

HIð1Þ½ðS − 1ÞGðIÞ þ RðIÞ� ¼ 0; ðB8Þ

where S is an operator acting on GðIÞ, defined as

S ¼ γ−1O ðγIIΔ−1 þ FΔ1Þ: ðB9Þ

Here, Δh is the finite difference operator, which acts on a
function fðIÞ as ΔhfðIÞ≡ fðI þ hÞ − fðIÞ. Thus, the
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function GðIÞ that solves Eq. (B8) is GðIÞ ¼ ð1 − SÞ−1
RðIÞ≡ LRðIÞ, where the operator L ¼ P∞

n¼0 S
n. Thus,

H0
Ið1Þ ¼ γ−1O HIð1ÞLRðIÞ, and

hOIi ¼ γ−1O hILRðIÞi; hORðIÞi ¼ γ−1O hRðIÞLRðIÞi:
ðB10Þ

Note that the terms on the right-hand sides inside
the hi brackets are solely functions of I, and hence, the
averages depend on PðIÞ. Plugging Eqs. (B4), (B7), and
(B10) into Eq. (B1) gives an expression for the relative
error:

E ¼ 1 −
Ī−1hðIL − ĪÞRðIÞi2
γOhRðIÞi þM½RðIÞ� ;

M½RðIÞ�≡ hRðIÞLRðIÞi − hRðIÞi2: ðB11Þ

To make further progress on the evaluation of E, it would
be helpful to express RðIÞ in terms of eigenfunctions of S
(which would also be eigenfunctions of L). To do this, we
employ a set of techniques known as umbral calculus [20],
which starts with the observation that the function RðIÞ can
be expanded in a Newton series (the finite difference analog
of the Taylor series),

RðIÞ ¼
X∞
m¼0

ρmðIÞm; ρm ≡ 1

m!
Δm

1 RðIÞjI¼0; ðB12Þ

where ðIÞm ≡ IðI − 1Þ…ðI −mþ 1Þ ¼ m!ð ImÞ is the mth
falling factorial of I [with ðIÞ0 ≡ 1]. The Newton series
expansion exists assuming RðIÞ fulfills certain analyticity
and growth conditions [31], which are satisfied for all
physically realistic production functions. Finite difference
operators acting on ðIÞm result in linear combinations of
falling factorials. In particular, Δ1ðIÞm ¼ mðIÞm−1 and
IΔ−1ðIÞm ¼ −mðIÞm. Thus, the operator S acting on
ðIÞm gives

SðIÞm ¼ −
mγI
γO

½ðIÞm − ĪðIÞm−1�: ðB13Þ

If we consider functions like RðIÞ as vectors in the basis of
falling factorials fðIÞm;m ¼ 0; 1;…g, with components
ρm, then from Eq. (B13) the operator S is a simple
bidiagonal matrix in this basis, with elements

Sm0;m ¼ −
mγI
γO

δm0;m þmγI Ī
γO

δm0;m−1: ðB14Þ

The eigenvalues of λn of S, labeled by n ¼ 0; 1;… in
decreasing order, are just the diagonal matrix components,
λn ¼ −nγI=γO. The corresponding eigenfunctions are

vnðIÞ ¼
Xn
m¼0

�
n
m

�
ð−ĪÞmðIÞn−m: ðB15Þ

The nth eigenfunction vnðIÞ is a polynomial in I of degree
n, with the first few eigenfunctions given by

v0ðIÞ ¼ 1; v1ðIÞ ¼ I − Ī; v2ðIÞ ¼ ðI − ĪÞ2 − I;

v3ðIÞ ¼ ðI − ĪÞ3 − 3IðI − ĪÞ þ 2I: ðB16Þ

The eigenfunctions vnðIÞ are mathematically related to
expansions of the master equation through alternative
approaches, for example, the spectral method of
Refs. [25,26]. In fact, vnðIÞ ¼ n!hnjIi, where hnjIi is
the mixed product defined in Eq. (A8) of Ref. [25] (with
Ī substituted for the rate parameter g).
Since Eq. (B15) can be inverted to express ðIÞm in terms

of the eigenfunctions,

ðIÞm ¼
Xm
n¼0

�
m
n

�
Īm−nvnðIÞ; ðB17Þ

we can write RðIÞ in terms of the eigenfunctions by
plugging Eq. (B17) into Eq. (B12),

RðIÞ¼
X∞
n¼0

σnvnðIÞ; σn≡
X∞
m¼0

�
m
n

�
ρmĪm−n; ðB18Þ

where we use the property that ðmnÞ ¼ 0 for n > m. The
operator L ¼ P∞

k¼0 S
k acting on RðIÞ is then

LRðIÞ ¼
X∞
n¼0

σn
X∞
k¼0

�
−
nγI
γO

�
k
vnðIÞ

¼
X∞
n¼0

σn
γO

γO þ nγI
vnðIÞ: ðB19Þ

Since the quantities in Eq. (B11) for E involve averages
with respect to PðIÞ, it is useful to derive the first and
second moments of the eigenfunctions. From the fact
that the falling factorials have very simple averages in
the Poisson distribution, hðIÞmi ¼ Īm, we find using
Eq. (B15) that hvnðIÞi ¼ δn;0. This implies that hRðIÞi ¼
hLRðIÞi ¼ σ0. To find hvn0 ðIÞvnðIÞi, we start from the
Chu-Vandermonde identity [20], the umbral analog of the
binomial theorem,

ðxþ yÞm ¼
Xm
k¼0

�
m
k

�
ðxÞm−kðyÞk: ðB20Þ

For x ¼ I −m0 and y ¼ m0, this gives

CELLULAR SIGNALING NETWORKS FUNCTION AS … PHYS. REV. X 4, 041017 (2014)

041017-11



ðIÞm ¼
Xn
k¼0

�
m

k

�
ðI −m0Þm−kðm0Þk

¼
Xn
k¼0

k!

�
m

k

��
m0

k

�
ðI −m0Þm−k; ðB21Þ

where we use the fact that ðmÞk ¼ k!ðmkÞ. Multiplying both
sides by ðIÞm0, we find

ðIÞm0 ðIÞm ¼
Xn
k¼0

k!

�
m

k

��
m0

k

�
ðIÞm0 ðI −m0Þm−k

¼
Xn
k¼0

k!

�
m

k

��
m0

k

�
ðIÞmþm0−k: ðB22Þ

The second equality is based on the relation
ðIÞiþj ¼ ðIÞiðI − iÞj, which follows from the definition
of the falling factorial. Taking the average of both sides of
Eq. (B22) yields

hðIÞm0 ðIÞmi ¼
Xn
k¼0

k!

�
m
k

��
m0

k

�
Īmþm0−k: ðB23Þ

An alternative expression for hðIÞm0 ðIÞmi can be derived by
substituting the eigenfunction expansion of Eq. (B17) for
both ðIÞm0 and ðIÞm,

hðIÞm0 ðIÞmi ¼
Xm0

n0¼0

Xm
n¼0

�
m0

n0

��
m

n

�
Īmþm0−n−n0 hvn0 ðIÞvnðIÞi:

ðB24Þ

Comparing the right-hand sides of Eqs. (B23) and (B24),
we see that hvn0 ðIÞvnðIÞi ¼ n!Īnδn0;n. Together with
Eqs. (B18) and (B19), this allows us to calculate

M½RðIÞ� ¼ hRðIÞLRðIÞi − hRðIÞi2

¼
X∞
n0¼0

X∞
n¼0

σn0σn
γO

γO þ nγI
hvn0 ðIÞvnðIÞi − σ20

¼
X∞
n¼1

σ2n
γOn!Īn

γO þ nγI
: ðB25Þ

Using the fact that I ¼ Īv0ðIÞ þ v1ðIÞ, we can similarly
evaluate

hðIL − ĪÞRðIÞi

¼
X∞
n¼0

σn

�
Īhv0ðIÞvnðIÞi þ

γO
γO þ γI

hv1ðIÞvnðIÞi
�
− Īσ0

¼ γOĪσ1
γO þ γI

: ðB26Þ

Plugging Eqs. (B25) and (B26) into Eq. (B11), we obtain
our final expression for the relative error:

E ¼ 1 −
Īγ2Oσ

2
1

ðγI þ γOÞ2
�
γOσ0 þ

X∞
n¼1

σ2n
γOn!Īn

γO þ nγI

�−1
: ðB27Þ

This expression can be readily calculated numerically for
any given RðIÞ, as was done in the main text for the family
of Hill function production rates. To facilitate evaluation,
we express the coefficients σn as moments with respect to
the Poisson distribution PðIÞ in the following manner,
using the expansion of Eq. (B18):

hvnðIÞRðIÞi ¼
X∞
n0¼0

σn0 hvn0 ðIÞvnðIÞi ¼ σnn!Īn

⇒ σn ¼
hvnðIÞRðIÞi

n!Īn
: ðB28Þ

From the definition of vnðIÞ in Eq. (B15), the coefficients
σn can be written:

σn ¼
Xn
m¼0

ð−1Þn−mĪ−m
ðn −mÞ!

	�
I
m

�
RðIÞ



: ðB29Þ

Using Eq. (B29), the σn can be numerically calculated for
any RðIÞ. The sum in Eq. (B27) converges quickly because
the σn decrease rapidly with n, so typically, only σn for
n ≤ 5 are needed to get accurate results for E.
The expression in Eq. (B27) also allows us to determine

under what conditions the relative error E becomes
minimal. For this to occur, we need σ1 ≠ 0, since other-
wise, E takes its maximum value of 1. The sum within the
brackets in Eq. (B27) is composed of only non-negative
terms, and E is smallest when this sum is minimal. This can
be achieved by setting σn ¼ 0 for all n ≥ 2. Thus, E is
bounded from below by

E ≥ 1 −
Īγ2Oσ

2
1

ðγI þ γOÞ2
�
γOσ0 þ σ21

γOĪ
γO þ γI

�−1
; ðB30Þ

where the equality is reached only when RðIÞ has an
optimal linear form, RoptðIÞ ¼ σ0v0ðIÞ þ σ1v1ðIÞ ¼
σ0 þ σ1ðI − ĪÞ. The right-hand side of Eq. (B30) is mini-

mized with respect to γO when γO ¼ γI
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p
, with

~Λ≡ Īσ21=σ0γI. At this optimal γO, the inequality in
Eq. (B30) becomes

E ≥
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~Λ

p ≡ Eopt: ðB31Þ
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APPENDIX C: MAPPING THE ENZYMATIC
PUSH-PULL LOOP ONTO THE WK FILTER

The full set of reactions for the enzymatic push-pull loop
is given by

∅⇌F
γK

K;

K þ S⇌
κb

κu
SK→

κr K þ S�;

Pþ S� ⇌
ρb

ρu
S�P→

ρr Pþ S: ðC1Þ

The corresponding steady-state populations are

K̄¼ F
γK

; S̄K ¼ Fκþ
γKκ−

; S̄� ¼ Fκrκþρ−
γKκ−ρrρþ

; S̄�P¼
Fκrκþ
γKκ−ρr

;

ðC2Þ

where κþ ¼ κbS̄, κ− ¼ κu þ κr, κ ¼ κþ þ κ−, ρþ ¼ ρbP̄,
ρ− ¼ ρu þ ρr, and ρ ¼ ρþ þ ρ−.
For the system in Eq. (C1), the associated set of chemical

Langevin equations is

dK
dt

¼ F − γKK − κbKSþ ðκu þ κrÞSK þ n1 þ n2 þ n3;

dSK
dt

¼ κbKS − ðκu þ κrÞSK − n2 − n3;

dS�

dt
¼ κrSK − ρbPS� þ ρuS�P þ n3 þ n4;

dS�P
dt

¼ ρbPS� − ðρu þ ρrÞS�P − n4 þ n5;

dP
dt

¼ −
dS�P
dt

;
dS
dt

¼ −
dSK
dt

−
dS�

dt
−
dS�P
dt

; ðC3Þ

where the equations on the last line come from the
assumptions that the total populations of free or bound
phosphatase (Pþ S�P) and free or bound substrate in all its
forms (Sþ SK þ S� þ S�P) remain constant. The noise
terms niðtÞ ¼

ffiffiffiffiffiffiffi
Pni

p
ηiðtÞ, where the ηiðtÞ are Gaussian

white noise functions with correlations hηiðtÞηjðt0Þi ¼
δijδðt − t0Þ. The constants Pni are the power spectra of
the noise terms, given by

P1 ¼ 2γKK̄; P2 ¼ κbK̄ S̄þκuS̄K; P3 ¼ κrS̄K;

P4 ¼ ρbP̄S̄� þ ρuS̄�P; P5 ¼ ρrS̄�P: ðC4Þ

We are interested in how the kinase input signal δI ¼
δK þ δSK is transduced into the active substrate output
δO ¼ δS� þ δS�P, and, in particular, whether the system can
be approximately mapped onto a WK noise filter of the
form given in the main text [Eq. (2)]. [Recall that δxðtÞ≡
xðtÞ − x̄ for any time series xðtÞ.] Since the WK description

hinges on the form of the correlation functions of input
and output, we need to calculate such correlations for the
dynamical equations in Eq. (C3). After linearizing these
equations, it will be easier to work in Fourier space, where
the Fourier-transformed correlation functions correspond to
power spectra: PδxðωÞ ¼

R
dthδxðtÞδxð0Þieiωt for a given

δxðtÞ. Hence, it will useful, before proceeding further, to
recast Eq. (2), the time-domain noise filter, as a Fourier-
space relation in terms of the power spectra. The result is

PδIðωÞ ¼
2Fγ−2I

1þ ðω=γIÞ2
;

PδOðωÞ ¼
ðR1=γOGÞ2
1þ ðω=γOÞ2

�
G2PδIðωÞ þ

2FðG=γIÞ2
Λ

�
: ðC5Þ

Our goal in this section is to show that PδI and PδO
calculated for the enzymatic push-pull loop in Eq. (C3)
have the approximate form of Eq. (C5), with effective
values for γI, γO, R1, and Λ expressed in terms of the loop
reaction rate parameters.
The equilibrium populations K̄ and S̄K scale with Ī as

K̄ ¼ ðκ−=κÞĪ and S̄K ¼ ðκþ=κÞĪ. Similarly, S̄� ¼ ðρ−=ρÞŌ
and S̄�P ¼ ðρþ=ρÞŌ. Each deviation from the mean—δK,
δSK, δS�, and δS�P—we explicitly divide into a component
that scales with δI or δO like the mean population (the
“slowly” varying component), and the remainder (the
“quickly” varying component, denoted with subscript q):

δK ¼ κ−
κ
δI þ δIq; δSK ¼ κþ

κ
δI − δIq;

δS� ¼ ρ−
ρ
δOþ δOq; δS�P ¼ ρþ

ρ
δO − δOq: ðC6Þ

We can interpret Eq. (C6) as defining a change of variables
from the set δK, δSK , δS�, δS�P to the set δO, δOq, δI, δIq.
The nomenclature of slow and quick components comes
from the fact that if the enzymatic reaction rates (κþ, κ−, ρþ,
ρ−) are made extremely rapid, the characteristic time scales
for the δIq and δOq fluctuations become so small that the
quick components can be neglected, since there would be
nearly instantaneous equilibration between the free and
bound enzyme populations. In general, however, we cannot
assume this limiting case always holds, so we take into
account both the slow and quick components in our
analysis.
The dynamical system of Eq. (C3), after linearization,

Fourier transform, and the change of variables in Eq. (C6),
takes the form of a linear system of equations that can be
written in matrix form as
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0
BBBBB@

−iωþ κ−γK
κþ

γK 0 0

κþðiωS̄−κþK̄Þ
κS̄ −iωþκþ κþK̄

S̄ −κþK̄
S̄ 0

−κrκþ
κ κr −iωþ ρrρþ

ρ −ρr

0 0
ρþðiωP̄−ρþS̄�Þ

ρP̄ −iωþρþ ρþS̄�

P̄

1
CCCCCA

×

0
BBBBB@

δ~I

δ~Iq

δ ~O

δ ~Oq

1
CCCCCA

¼

0
BBB@

~n1
~n2þ ~n3
~n3þ ~n5
~n4− ~n5

1
CCCA; ðC7Þ

where ~xðωÞ denotes the Fourier transform of xðtÞ.
Equation (C7) can be solved analytically for δ ~O, δ ~Oq,
δ~I, δ~Iq, though for simplicity we do not write out the full
solutions, since these would take up too much space.
Rather, we sketch out the basic approach to calculating
and approximating the associated power spectra. The
structure of the solutions to Eq. (C7), for example, δ~I, is
a linear combination of the noise functions, δ~IðωÞ ¼P

5
i¼1 aδI;iðωÞ ~niðωÞ, with coefficients aδI;iðωÞ. The corre-

sponding power spectrum is PδIðωÞ ¼
P

5
i¼1 jaδI;iðωÞj2Pni ,

with Pni given by Eq. (C4). The function PδIðωÞ can be
written out in the form of a rational function with even
powers of ω in the numerator and denominator,

PδIðωÞ ¼
P

N
i¼0 nδI;iω

2i

1þP
D
i¼1 dδI;iω

2i ; ðC8Þ

where nδI;i and dδI;i are coefficients independent of ω, and
N ¼ 3, D ¼ 4 for the case of PδI . In order to simplify

Eq. (C8) further, we make two assumptions. (i) The
characteristic time scale over which the input signal varies,
γ−1K , is much longer than the characteristic time scales of
the enzymatic reactions, κ−1α and ρ−1α , where α denotes
the various subscripts þ, −, and r. For the parameters
in the main text, γ−1K ∼Oð102 sÞ, while κ−1α , ρ−1α ∼
Oð10−1–100 sÞ. This is the physically interesting regime,
since we can expect the system to efficiently transduce
signals that vary more slowly than the intrinsic reactions
that carry out the transduction. Limiting our focus to
frequencies ω ≪ κ−1α , ρ−1α , it turns out that the higher-order
powers of ω in both the numerator and denominator of
Eq. (C8) are negligible, and the power spectrum can be
approximated by

PδIðωÞ ≈
nδI;0

1þ dδI;1ω2
: ðC9Þ

(ii) We assume that the system is in the regime where
K̄ ¼ F=γK ≪ S̄, P̄. Thus, we expand the coefficients nδI;0
and dδI;1 in Eq. (C9) up to first order in K̄=S̄ and K̄=P̄,
resulting in a PδIðωÞ that has the form of Eq. (C5). Namely,
nδI;0 ≈ 2Fγ−2I and dδI;1 ≈ γ−2I , where the effective γ−2I is
given by

γI ¼
κ−γK
κ

þ κ2þðρrρþ þ κrρÞγKK̄
κ2ρrρþS̄

: ðC10Þ

In an analogous manner, we can find the correspondence
between PδOðωÞ and the form in Eq. (C5), leading to the
following expressions for the remaining effective
parameters:

γO ¼ ρrρþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρrρþ

p −
κrκþρþρ−ρK̄

κ−ðρ2 − 2ρrρþÞ3=2P̄
; R1 ¼

κrκþρ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρrρþ

p −
2κ2rκ

2þρþρ−K̄
κ−κðρ2 − 2ρrρþÞ3=2P̄

;

Λ ¼ κrκþκ2ρ2

γKκ−½ρ2ðκ2 − κrκþÞ − ρrρþκ2�
þ κrκ

2þκρK̄
γKρrκ

2
−ρþ½ρ2ðκrκþ − κ2Þ þ ρrκ

2ρþ�2S̄ P̄
½(κ2rκþρ3ðκþ − κ−Þ

þκrρfρrρþ½2κ3þ þ κ2þð2κ− þ ρÞ − 2κþκ2− þ κ2−ðρ − 2κ−Þ� − 2κ2ρ2ðκþ − κ−Þg
þ2ρrκþκ2ρþðρrρþ − ρ2Þ)ρP̄þ κrρrκ

3ρþρ−ðρ− − ρþÞS̄�: ðC11Þ

The results in Eqs. (C10) and (C11), without the first-order
corrections in K̄=S̄ and K̄=P̄, correspond to Eq. (8) in the
main text.
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