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ABSTRACT: Accurate propagation of signals through stochastic biochem-
ical networks involves significant expenditure of cellular resources. The same
is true for regulatory mechanisms that suppress fluctuations in biomolecular
populations. Wiener−Kolmogorov (WK) optimal noise filter theory,
originally developed for engineering problems, has recently emerged as a
valuable tool to estimate the maximum performance achievable in such
biological systems for a given metabolic cost. However, WK theory has one
assumption that potentially limits its applicability: it relies on a linear,
continuum description of the reaction dynamics. Despite this, up to now no
explicit test of the theory in nonlinear signaling systems with discrete
molecular populations has ever seen performance beyond the WK bound. Here we report the first direct evidence of the bound
being broken. To accomplish this, we develop a theoretical framework for multilevel signaling cascades, including the possibility of
feedback interactions between input and output. In the absence of feedback, we introduce an analytical approach that allows us to
calculate exact moments of the stationary distribution for a nonlinear system. With feedback, we rely on numerical solutions of the
system’s master equation. The results show WK violations in two common network motifs: a two-level signaling cascade and a
negative feedback loop. However, the magnitude of the violation is biologically negligible, particularly in the parameter regime where
signaling is most effective. The results demonstrate that while WK theory does not provide strict bounds, its predictions for
performance limits are excellent approximations, even for nonlinear systems.

■ INTRODUCTION

Fundamental mathematical limits on the behavior of
biochemical reaction networks1−6 provide fascinating insights
into the design space of living systems. Though these limits
remain notoriously permeable compared to their analogues in
physics (subject to reinterpretaton and exceptions as additional
biological complexities are discovered), they still give a rough
guide to what is achievable by natural selection for a given set
of resources. They also raise other interesting issues:7,8 Is
selection actually strong enough to push a particular system
toward optimality? When is performance sacrificed due to
metabolic costs or the randomizing forces of genetic drift?
Information processing in cellular networks has been a

particularly fertile ground for discussing optimality. Certain
cellular processes like environmental sensing rely on accurate
information transfer through intrinsically stochastic networks
of reactions.9,10 Other processes in development and
regulation depend on suppressing noise through homeostatic
mechanisms like negative feedback.11−14 Either scenario,
whether maintaining a certain signal fidelity or suppressing
fluctuations, can be quite expensive in terms of metabolic
resources,3,15 and hence potentially can be an area where
optimization is relevant.
Discussions of signaling performance limits are often framed

in terms of information theory concepts like channel

capacity16,17 and complemented by direct experimental
estimates.18−25 In recent years, another tool has emerged for
understanding constraints on biological signal propagation:
optimal noise filter theory.15,26−30 This draws on the classic
work of Wiener and Kolmogorov (WK) in engineered
communications systems.31−33 The theory maps the behavior
of a biological network onto three basic components: a signal
time series, noise corrupting the signal, and a filter mechanism
to remove the noise. Once the identification is made, the
payoff is substantial: One can use the WK solution for the
optimal noise filter function to derive the closed forms of
analytical bounds on measures of signal fidelity (like mutual
information) or noise suppression (like Fano factors). These
bounds depend on the network’s reaction rate parameters,
allowing us to determine a minimum energetic price associated
with a certain level of performance.15 Finally, the theory
specifies the conditions under which optimality can be realized
in a particular network.
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To date, however, there has been one major caveat: The WK
theory relies on a continuum description of the molecular
populations in the network and assumes all reaction rates are
linearly dependent on the differences of these population
numbers from their mean values. While this may be a good
approximation in certain cases (i.e., large populations, with
small fluctuations relative to the mean), it certainly raises
doubts about the universal validity of the bounds derived from
the theory. Biology is rife with nonlinearities, for example, so-
called ultrasensitive, switch-like rate functions34 in signaling
cascades. Could these nonlinear effects allow a system to
substantially outperform a WK bound derived using linear
assumptions? Curiously, every earlier attempt to answer this
question for specific systems26,28 (summarized below) has
yielded the same answer: The WK bound seemed to hold
rigorously even when nonlinearities and discrete populations
were taken into account.
The current work shows that this is not the full story. We

have found for the first time two biological examples that can
be explicitly proven to violate their WK bounds: a two-level
signaling cascade and a negative feedback loop. To
demonstrate this, we start by describing a general theoretical
framework for signaling cascades with arbitrary numbers of
intermediate species (levels), with the possibility of feedback
interactions between the input and output species. We show
how to calculate WK bounds based on the linearized,
continuum version of this system, generalizing earlier WK
results for single-level systems. In order to check the validity of
the WK bound, we introduce an analytical approach for
calculating exact moments of the discrete stationary probability
distribution of molecular populations, starting from the
underlying master equation. Our method works for arbitrarily
long cascades in the absence of feedback. It allows us to find

cases in a nonlinear two-level signaling cascade where the WK
bound holds, as well as cases where it is violated. A similar
picture emerges in a nonlinear single-level system with negative
feedback, but here we use an alternative numerical approach to
tackle the master equation. Remarkably, for the cases where
nonlinearity helps beat the WK bound, the magnitude of the
violation is tiny, typically fractions of a percent. We observe a
trend that as the signaling efficiency increases, improving the
biological function of the system, the size of the violation
decreases or vanishes. This makes the WK value an excellent
estimate for the actual performance limit in the biologically
relevant parameter regime. Thus, while the results show that
the WK theory does not rigorously bound the behavior of
nonlinear signaling systems, they also put the theory on a more
solid foundation for practical applications.

■ RESULTS AND DISCUSSION
Signaling Network. We begin by defining a general model

of an N-level cellular signaling cascade. Each specific system we
consider in our analysis will be a special case of this model. As
shown schematically in Figure 1, we have an input chemical
species X0 followed by N downstream species X1, ..., XN. For
example, if this was a model of a mitogen-activated kinase
(MAPK) cascade,35 the input X0 would be an activated kinase,
which activates another kinase via phosphorylation (X1), which
in turn leads to a sequence of downstream activations until we
reach the final activated kinase XN. The copy number of species
Xi is denoted by xi = 0, 1, 2,... Hence, the state of the system
can be represented by the vector x = (x0, x1, ..., xN). Stochastic
transitions between states are governed by an infinite-
dimensional Markovian transition rate matrix W. The element
Wx′,x of this matrix represents the probability per unit time to
observe state x′ at the next infinitesimal time step, given that

Figure 1. Overview of the N-level signaling cascade model, showing an example with N = 2. The signal from input species X0 is propagated through
to output species XN, with the possibility of feedback back to the input. In the absence of feedback, the signal fidelity is measured via the error E,
defined in terms of correlations between the input fluctuations δx0(t) = x0(t) − ⟨x0⟩ and output fluctuations δxN(t) = xN(t) − ⟨xN⟩. In the
linearized system, the error is related to the input−output mutual information through Elog1

2 2= − . For the system with feedback, the

quantity we focus on is ϵ, the ratio of input variance x t( )0
2δ⟨ ⟩ with feedback to the variance x t( )0

2
0δ⟨ ⟩ϕ= without. This is also equal to the Fano

factor x t x( ) /0
2

0δ⟨ ⟩ ⟨ ⟩, which measures the effectiveness of feedback in suppressing input fluctuations.
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the current state is x. The values of these elements will depend
on the rates of the chemical reactions that are possible in our
signaling network, as described below. The probability px(t) of
being in state x at time t evolves according to the
corresponding master equation:36

t
p t W p t W p t

d
d

( ) ( ) ( )x
x

x x x x x x, ,∑= [ ′ ′
− ′ ]

′ (1)

The first term on the right represents the gain of probability in
state x due to transitions out of all other states x′ into x, and
the second term represents the loss due to transitions out of x
into all other states. We will focus on systems whereW is time-
independent and the system reaches a unique stationary
distribution x . The latter satisfies eq 1 with the left-hand side
set to zero:

W W0
x

x x x x x x, ,∑= [ ′ ′ − ′ ]
′ (2)

All physical observables we consider can be expressed as
averages over this stationary distribution. If f(x) is some
function of state x, we will use f f x( )x x⟨ ⟩ ≡ ∑ to denote the
associated stationary average.
The detailed form of eq 2 for our cascade requires specifying

all the possible chemical reactions in our network. We start
with species X0, which is produced with some rate R0(xN) ≥ 0.
We treat “production” as occurring with a single effective rate,
encompassing all the substeps involved in activation of X0 from
some inactive form (not explicitly included in the model). The
functional form of the rate R0(xN) can be decomposed into two
parts:

R x F x( ) ( )N N0 ϕ= + (3)

Here, F represents a constant baseline activation rate and
ϕ(xN) the perturbation of that rate due to feedback from the
final downstream species XN. ϕ(xN) is a potentially nonlinear
function, with ϕ′(xN) < 0 corresponding to negative feedback
(production of X0 inhibited by increases in xN), and ϕ′(xN) > 0
corresponding to positive feedback (production of X0
enhanced by increases in xN). In the absence of feedback,
ϕ(xN) = 0. The possibility of feedback from the last species to
an upstream one has analogues in biological systems like the
ERK MAPK pathway.37 Of course, there may be feedback to
multiple upstream species (as is the case for ERK), but here we
only consider one feedback interaction as a starting point for
modeling.
In a similar spirit, the baseline rate F is a constant for

simplicity, representing the net effect of processes leading to
the activation of X0 that are not explicitly part of the model.
There are also deactivation processes for X0 (i.e., the action of
phosphatases) which we model by an overall deactivation rate
γ0x0 proportional to the current population. We denote the
constant γ0 as the per-capita deactivation rate. For the case of
no-feedback, the marginal stationary probability of the input X0

is a Poisson distribution x x( ; )0 0Π ̅
38

x x
x

x
( ; )

( ) e
( )

x x

0 0
0

0

0 0

Π ̅ = ̅
!

− ̅

(4)

where x F/0 0γ̅ ≡ , which in this case is equal to the mean and

variance: x x x( )0 0
2

0δ⟨ ⟩ = ⟨ ⟩ = ̅ , with δx0 ≡ x0 − ⟨x0⟩.
Dynamically, the input signal has exponentially decaying
autocorrelations, with characteristic time 0

1γ− . More complex

types of input (for example with time-dependent F(t) or
nonexponential autocorrelations) can also be considered in
generalizations of the model.26,27 For our system, once
feedback is turned on, the input distribution is no longer
simply described by eq 4 and in general will not have a closed
form analytical solution.
For i > 0, the production function for the ith species Xi is

Ri(xi−1) ≥ 0, depending on the population xi−1 directly
upstream. The deactivation rate at the ith level is γixi. We allow
the Ri functions to be arbitrary and, hence, possibly nonlinear.
Putting everything together, we can now write out the explicit
form of eq 2:

x x R x0 ( 1) ( )
i

N

i i i i ix e x x e x
0

1i i
∑ γ= { [ + − ]+ [ − ]}
=

+ − −

(5)

For compactness of notation, we define x−1 ≡ xN and introduce
the (N + 1)-dimensional unit vectors ei, where e0 = (1, 0, ..., 0),
e1 = (0, 1, 0, ..., 0), e2 = (0, 0, 1, 0, ..., 0), and so on. Equation 5
is generally analytically intractable, in the sense that we cannot
usually directly solve it to find the stationary distribution x .
Despite this limitation, we can still make progress on
understanding signaling behavior in the cascade via alternative
approaches. Linearization of the production functions,
described in the next section, is one such approach. Crucially,
this approximation facilitates deriving bounds on signaling
fidelity via the WK filter formalism. Later on, we will also
introduce exact analytical as well as numerical methods for
tackling certain cases of eq 5, to explore the validity of the WK
bounds in the presence of nonlinearities.

WK Filter Formalism. In this section, we provide a brief
overview of linearizing our signaling model and mapping it to a
WK filter, generalizing the approach developed in refs 26, 28,
and 38. This mapping allows us to derive bounds on various
measures of signaling fidelity, which we know are valid at least
within the linear approximation. The aim here is to summarize
the bounds that we will later try to beat by introducing
nonlinearities. Additional details of the WK approach can be
found in the review of ref 38, which presents three special cases
of our model: the N = 1 and N = 2 cascades without feedback,
and the N = 1 system with feedback. The WK bound for the
general N-level cascade, with and without feedback, is
presented here for the first time, with the complete analytical
derivation shown in the Supporting Information (SI).

Linearization. If we consider the limit where the mean
copy numbers of all the chemical species in the cascade are
large, we can approximately treat each population xi as a
continuous variable. If the magnitude of fluctuations in the
stationary state is small relative to the mean, we can also
approximate all the production functions to linear order
around their mean values

R x F x x

R x x x i

( ) ( )

( ) ( ) 0

N N N

i i i i i i

0 1

1 0 1 1 1

ϕ

σ σ

≈ − − ̅
≈ + − ̅ >− − − (6)

with some coefficients ϕ1, σi0, and σi1. Here, we have absorbed
the zeroth-order Taylor coefficient of ϕ(xN) around xN̅ into F.
Note that the sign convention for the first-order coefficient ϕ1
means that ϕ1 > 0 corresponds to negative feedback. The
stationary averages in the linearized case are
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x
F

x ifor 0i
i

i
0

0

0

γ
σ
γ̅ = ̅ = >

(7)

We will use bar notation like xi̅ to exclusively denote the
linearized stationary mean values. Brackets like ⟨xi⟩ will always
denote the true mean, whether the system is linear (in which
case x xi i⟨ ⟩ = ̅ ) or not.
One advantage of linearization is the ability to express

dynamics in an analytically tractable form, using the chemical
Langevin approximation.39 This approximation applies to
systems with large copy numbers of chemical species, so that
the populations xi(t) can be approximated as continuous
functions. Another assumption involves the number of
reactions of each possible type that occur in a microscopic
time step, which ordinarily obeys Poisson statistics. In the
chemical Langevin approach, these numbers are assumed to be
sufficiently large that the Poisson distributions can be
approximated by Gaussian ones. This leads to dynamical
equations which have the form of deterministic rate equations
with added Gaussian noise. We will later directly test the
validity of these assumptions for signaling systems when we
compare the WK bounds derived from the Langevin approach
to our exact results based on eq 5. The Langevin equations
corresponding to eq 5 are

t
x t R x x t n t

t
x t R x x t n t i

d
d

( ) ( ) ( ) ( )

d
d

( ) ( ) ( ) ( ) 0

N

i i i i i i

0 0 0 0 0

1

γ

γ

= − +

= − + >− (8)

where the ni(t) components are Gaussian noise functions with
correlations n t n t x t t( ) ( ) 2 ( )i j ij i iδ γ δ⟨ ′ ⟩ = ̅ − ′ . We can rewrite eq
8 in terms of deviations from the mean, δxi(t) ≡ xi(t) − ⟨xi⟩,
plugging in eqs 6 and 7. The result is

t
x t x t x t n t

t
x t x t x t n t i

d
d

( ) ( ) ( ) ( )

d
d

( ) ( ) ( ) ( ) 0

N

i i i i i i

0 0 0 1 0

1 1

δ γ δ ϕ δ

δ γδ σ δ

= − − +

= − + + >−

(9)

As shown in the SI Section 1, this system of stochastic
differential equations can be solved using a Fourier transform.
Finding Bounds on Signal Fidelity by Mapping the

System onto a Noise Filter. The linear chemical Langevin
approach also allows us to map the system onto a classic noise
filter problem from signal processing theory. We describe two
versions of this mapping here, the first for the system without
feedback, and the second with feedback.
1. No-Feedback System. Imagine we are interested in

understanding correlations between two dynamical quantities
in our system, as a measure of how accurately signals are
transduced through the cascade. The choice of these two
quantities, one of which we will label the “true signal” s(t) and
the other the “estimated signal” s t( )̃ within the filter formalism,
depends on the biological question we would like to ask. For
the cascade without feedback (ϕ1 = 0), a natural question is
how well the output XN reflects the input X0. The function of
the cascade can be to output an amplified version of the
input,40 but there is inevitably corruption of the signal as it is
transduced from level to level due to the stochastic nature of
the biochemical reactions in the network. If we assign s(t) ≡
δx0(t) and s t x t( ) ( )Nδ̃ ≡ , it turns out that because of the

linearity of the dynamical system in eq 9 the two are related
through a convolution:

s t t H t t s t n t( ) d ( ) ( ) ( )∫̃ = ′ − ′ [ ′ + ′ ]
−∞

∞

(10)

The details of the functions H(t) and n(t), as derived from eq
9, are given in the SI Section 1. One can interpret eq 10 as a
linear noise filter: a signal s(t) corrupted with additive noise
n(t) (a function which depends on the Langevin noise terms
ni(t)) is convolved with a filter function H(t) to yield an
estimate s t( )̃ . The filter function, which encodes the effects of
the entire cascade, obeys an important physical constraint:
H(t) = 0 for all t < 0. This enforces causality, since it ensures
that the current value of s t( )̃ (the output in our case) only
depends on the past history of the input plus noise, s(t′) +
n(t′) for t′ < t.
The traditional version of filter optimization31−33 is

searching among all possible causal filter functions H(t) for
the one that minimizes the relative mean squared error
between the signal and estimate:

s t s t
s t s t

s t
( ( ), ( ))

( ( ) ( ))
( )

2

2ϵ ̃ = ⟨ ̃ − ⟩
⟨ ⟩ (11)

Since the averages are taken in a stationary state, ϵ is time-
independent and can have values in the range 0 ≤ ϵ < ∞. For
the case of a biological cascade, however, where s(t) and s t( )̃
are the times series of input and output fluctuations δx0(t) and
δxN(t), respectively, we expect that the output may be an
amplified version of the input. Hence, a better measure of
fidelity may be a version of eq 11 that is independent of the
scale differences between signal and estimate. To define this
scale-free error, note that the optimization search over all
allowable H(t) necessarily involves searching over all constant
prefactors A that might multiply a filter function H(t). Using
AH(t) as the filter function instead of H(t) is equivalent to
switching from s t( )̃ to As t( )̃ , as can be seen from eq 10. If we
were to look at the error s t As t( ( ), ( ))ϵ ̃ for a given s t( )̃ and
s(t), we can readily find the value of A that minimizes this
error, which is given by A s t s t s t( ) ( ) / ( )2= ⟨ ̃ ⟩ ⟨ ̃ ⟩. Plugging this
value in, we can define a scale-free error E as follows:

E s t s t s t As t
s t s t

s t s t
( ( ), ( )) min ( ( ), ( )) 1

( ) ( )
( ) ( )A

2

2 2̃ = ϵ ̃ = − ⟨ ̃ ⟩
⟨ ⟩⟨ ̃ ⟩

(12)

By construction, E s t s t s t s t( ( ), ( )) ( ( ), ( ))̃ ≤ ϵ ̃ and in fact E
have a restricted range: 0 ≤ E ≤ 1. The independence of E
from the relative scale of the output versus the input makes it
an attractive measure of the fidelity of information trans-
mission through the cascade. In fact, within the linear chemical
Langevin approximation, one can show that E 2 2= − , where
is the instantaneous mutual information in bits between s(t)

and s t( )̃ .38 Thus, E will be the main measure of signal fidelity
we focus on when we discuss the no-feedback cacade.
For a given s(t) and n(t), we denote the causal filter function

H(t) that minimizes s t s t( ( ), ( ))ϵ ̃ as the Wiener−Kolmogorov
(WK) optimal filter HWK(t). Because this optimization
includes exploring over all possible prefactors of H(t), the
same WK filter function simultaneously minimizes

s t s t( ( ), ( ))ϵ ̃ and E s t s t( ( ), ( ))̃ , and the minima of the two
error types coincide. We will denote this minimum as EWK.
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Hence, we have ϵ ≥ E ≥ EWK in general for linear systems, and
ϵ = E = EWK when H(t) = HWK(t).
The procedure for calculating HWK(t) for a specific system,

and then finding the optimal error bound EWK, is based on
analytical manipulation of the power spectra associated with
s(t) and n(t).33,38 We illustrate the details in SI Section 1,
applying the method to our cascade model. This yields the
following value for EWK for an N-level cascade without
feedback:

E 1
( )j

N
j j

j
WK

1

0 1

0
2∏

γ γ

γ λ
= −

Λ

+=

−

(13)

Here, x /( )j j j j1 1
2

0 0σ σ γΛ ≡ ̅ − is a dimensionless parameter
associated with the jth level, and λ = λj is the jth root with a
positive real part (Re(λj) > 0) of the following polynomial
B(λ):

B( )
j

N
j

k

j
k

k k
0
2

1
0
2

1

1
2 2

1
∑ ∏λ γ γ

γ λ
γ

= +
−
Λ=

−

=

−

− (14)

Various properties of the roots of this polynomial are
summarized in SI Section 1.3. Within the linear approximation,
EWK gives a lower bound on the achievable E and, hence, an
upper bound on the maximum mutual information between
input and output, Elogmax

1
2 2 WK= − .

Special cases of eq 13 recover earlier results. For N = 1, we
find the single root 11 0 1λ γ= + Λ , and we can rewrite eq 13
in a simple form

E N
2

1 1
for 1WK

1
=

+ + Λ
=

(15)

which is the result found in ref 26. Similarly, the N = 2 version,
with more complicated but still analytically tractable roots λ1
and λ2, was derived in ref 38. For the case of general N, the
roots λj can be found numerically. However, there is one
scenario where we know closed form expressions for all the λj
values for any N. This turns out to be the case where the
biological parameters of the cascade are tuned such that filter
function H(t) in eq 10 is proportional to HWK(t), and hence, E
= EWK. (We do not need strict equality of the filter functions,
because the resulting value of E is independent of an overall
constant in front of H(t).) That this is even possible is itself
nontrivial; generally, when we vary biological parameters in a
system mapped onto a noise filter, we allow H(t) to explore a
certain subspace of all possible filter functions. It is not
guaranteed that any H(t) in that subspace will coincide with
HWK(t) up to a proportionality constant. However, as shown in
SI Section 1 for the no-feedback N-level model, we can achieve
H(t) ∝ HWK(t) when the following conditions are met:

j N1 1, ...,j
j

j0
1

0

γ γ
γ

γ
= + Λ =−

(16)

These can be solved recursively to give nested radical forms

1

1 1

1 1 1

1 0 1

2 0 1 2

3 0 1 2 3

γ γ

γ γ

γ γ

= + Λ

= + + Λ Λ

= + + + Λ Λ Λ (17)

and so on. When these conditions are satisfied, the roots λj
have straightforward analytical forms, namely, λj = γj for all j.
Hence, we can substitute the values in eq 17 for λj in eq 13 to
get EWK explicitly when this scenario is true. With the aid of the
recursion relation in eq 16, we can then write EWK in this case
as

E 1
(1 1 )i

N
i

i
WK

1
2∏= −

+ += (18)

where i ≡ γi−1Λi/γ0 are dimensionless positive constants.
The simple form of the bound in eq 18 makes it useful for
analyzing the energetic cost of increasing signal fidelity in a
cascade. The biological implications of this bound are
discussed later on.

2. System with Feedback. The case with feedback uses a
qualitatively different, and more abstract, mapping of the
system onto a noise filter. Here the true and estimated signals
are identified with the following quantities:28,38

s t x t s t x t x t( ) ( ) ( ) ( ) ( )0 0 0 0 0δ δ δ≡ | ̃ = | −ϕ ϕ= = (19)

The subscript in δx0(t)|ϕ=0 denotes that this δx0(t) is obtained
by solving eq 9 with the feedback turned off, ϕ(xN) = 0 or
equivalently ϕ1 = 0. The δx0(t) without the subscript
represents the solution with the feedback present. With this
mapping, the error ϵ from eq 11 can be written as

s t s t
s t s t

s t
x t

x t
( ( ), ( ))

( ( ) ( ))
( )

( )
( )

2

2
0
2

0
2

0

δ
δ

ϵ ̃ = ⟨ ̃ − ⟩
⟨ ⟩

=
⟨ ⟩

⟨ | ⟩ϕ= (20)

The underlying motivation is that negative feedback can serve
as a homeostasis mechanism, dampening fluctuations δx0(t) in
the X0 species that are the direct target of the feedback.
Achieving a small ϵ, by making s t( )̃ as close as possible to s(t),
translates to an efficient suppression of X0 fluctuations (relative
to their undamped magnitude in the absence of feedback).
Note that in this case ϵ, rather than the scale-free error E, is the
quantity used to specify system performance. Despite this
difference, the problem is still a question of accurate
information propagation through the cascade, because we
need δxN(t) to encode a faithful representation of the input
fluctuations in order to be able to effectively suppress them via
negative feedback. Since the X0 fluctuations in the no-feedback
system follow the Poisson distribution of eq 4, the
denominator in eq 20 is given by x t x( )0

2
0 0δ⟨ | ⟩ = ̅ϕ= . Thus,

x t x( ) /0
2

0δϵ = ⟨ ⟩ ̅ , which is also known as the Fano factor (ratio
of variance to the mean), a standard measure for the size of
fluctuations. Poisson distributions have Fano factors ϵ = 1, but
negative feedback in optimal cases can reduce ϵ to values much
smaller than 1.
The close connections between the no-feedback and

feedback analysis are apparent when we consider the analogue
of the convolution in eq 10 for the feedback case. It turns out
that s(t) and n(t) have the same functional forms as in the no-
feedback case, but the filter function H(t) is different (details
in SI Section 2). Because the WK bound depends only on the
power spectra of s(t) and n(t), the result for the bound EWK is
exactly the same as eq 13, with roots λj specified by eq 14. The
interpretation of eq 13 in this case is as a lower bound for the
error in eq 20, namely, ϵ ≥ EWK.
Unlike the no-feedback cascade, where we can in principle

tune the biological parameters so that E = EWK, for the
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linearized negative feedback system we can only asymptotically
approach the bound from above, ϵ → EWK. This limit is easiest
to describe in the case where the production functions at each
level are directly proportional to the upstream species, Ri(xi−1)
∝ xi−1 for i > 0. In terms of eq 6, this corresponds to setting

x/i i i1 0 1σ σ= ̅ − , so that Ri(xi−1) = σi1xi−1. The following two
conditions are then needed to approach WK optimality: (i)
The levels in the cascade have fast deactivation rates relative to
the inverse autocorrelation time of the input, γi ≫ γ0 for i > 0;
(ii) the coefficient of the negative feedback function is tuned to
the value

( 1 1)
i

N
i

i
1 0 eff

1 1
∏ϕ γ

γ
σ

= + Λ −
= (21)

where

F
1 1

i

N

i
eff

1 0

1

∑
σ

Λ =
=

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (22)

In this limit, ϵ approaches EWK, with eq 13 evaluating to the
same form as eq 15, except for Λ replaced by Λeff

E
2

1 1WK
eff

=
+ + Λ (23)

The N = 1 special case of this result, where Λeff = Λ1 = σi0/F,
was the focus of ref 28.
Optimal Bounds and Metabolic Costs. The general EWK

bound in eq 13, and its corresponding values in various special
cases (eqs 15, 18, 23), depends on the production rate
parameters σi0, σi1 and the per-capita deactivation rates γi at
each state i. These processes have associated metabolic costs. If
production involves activation of a substrate via phosphor-
ylation, the cell has to maintain a sufficient population of
inactive substrate and also consumes ATP during phosphor-
ylation. Similarly, deactivation requires maintaining a pop-
ulation of phosphatases. Directly relating metabolic costs (i.e.,
the rate of ATP consumption) in these models to the
thermodynamic cost (entropy production rate) is not always
straightforward, since the models are coarse-grained and do
not account for the dissipation involved in reaction substeps
that are not explicitly described. However, one can roughly
estimate the entropy production rate at level i of the cascade by
multiplying the mean production rate σi0 by nΔμ/T, where Δμ
is the chemical potential energy of ATP hydrolysis (typically
≈21−29 kBT in biological systems15), T is the temperature,
and n is the number of ATP molecules consumed in an
activation reaction. Thus, higher production rates of active
species entail larger thermodynamic costs.
The parameter Λeff indirectly reflects these costs, since from

eq 22 it is proportional to the harmonic mean of all the per-
capita production rates σi0, i = 1, ..., N, relative to the baseline
activation rate F of the input species X0. Increasing the
production rate for any level will increase Λeff. The

x /( )i i i i1 1
2

0 0σ σ γΛ ≡ ̅ − parameters have a slightly different
interpretation: If we consider production functions of the
form Ri(xi−1) = σi1xi−1, with x/i i i1 0 1σ σ= ̅ − , as described in the
previous section, then Λi simplifies to x/( )i i i0 1 0σ γΛ = ̅ − . Thus,
in this case Λi is the average number of Xi molecules produced
per molecule of Xi−1 during the characteristic time interval 0

1γ−

of input fluctuations.

These interpretations of the parameters allow us to
understand the expense involved in achieving systems with
better optimal performance. For example, since ϵ from eq 20 is
given in terms of relative variance, a 10-fold decrease in the
standard deviation of fluctuations would require a 100-fold
decrease in ϵ. To decrease the optimal EWK from eq 23 by a
factor of 100, one would need roughly a 104 increase in Λeff,
assuming we are in the regime where Λeff ≫ 1. This extreme
cost of eliminating fluctuations via negative feedback3 has to be
borne across the whole cascade: Since Λeff in eq 22 is
potentially bottlenecked by one σi0 much smaller than the
others, the mean production rates for all the levels must be
hiked up in order to increase Λeff.
An analogous story emerges when we analyze the same

system without negative feedback. The relevant measure here
is the scale-free error E between the time series of input and
output populations, or equivalently the mutual information .
Imagine we would like to increase the mutual information
upper bound E(1/2)logmax WK= − by 1 bit. In the limit of i

≫ 1 in eq 18, this can be achieved for example by increasing
every i by a factor of 16≈ , regardless of N. Given x/i i i1 0 1σ σ= ̅ −
and x /i i i1 1,0 1σ γ̅ =− − − , we can evaluate the dimensionless
constant i associated with level i as

( / ) ( / )( / )i i i i i i1 0 0 1,0 1 0
2γ γ σ σ γ γ= Λ =− − −

Hence, increasing i requires either increasing the relative mean
production between the ith level and its predecessor, or the
per-capita deactivation rate of the latter (if i > 0), or some
combination of both. The massive cost of achieving multiple
bits of mutual information between input and output in a
biological signaling cascade is consistent with the narrow range
of experimentally measured values, spanning 1∼ to 3
bits,18−25 with most systems near the lower end of the
spectrum.

Nonlinearity in N = 1 Signaling Models: Earlier
Attempts to Go beyond the WK Limit. The linearized
noise filter approach described above provides a general recipe
for deriving bounds on signaling: (i) start with a linear
chemical Langevin description of the system; (ii) identify
signal and estimate time series that are based on observables of
interest, and are related via convolution in terms of some
system-specific filter function H(t); (iii) derive the optimal
filter function HWK(t) and the corresponding error bound EWK;
and (iv) explore if and under what conditions the system can
reach optimality. However, the procedure leaves open an
important question: Is the resulting bound EWK a useful
approximation describing the system’s performance limits, or
can biology potentially harness nonlinearity to enhance
performance significantly beyond the WK bound? We know
that nonlinear, Hill-like functional relationships are a regular
feature of biological signaling,41 manifested in some cases as an
extreme switch-like input−output relation known as ultra-
sensitivity.34 Is EWK still relevant in these scenarios? This
section summarizes previous efforts to answer this question (all
for the N = 1 case), setting the stage for our main calculations.

Nonlinearity in the N = 1 Model without Feedback.
Reference 26 derived an exact solution for the no-feedback N =
1 system with an arbitrary production function R1(x0) and
discrete populations. The input signal remains the same as in
the linear case, governed by production rate R0(xN) = F and
deactivation rate γ0. The starting point is expanding R1(x0) in
terms of a series of polynomials

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c07894
J. Phys. Chem. B 2021, 125, 12698−12711

12703

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c07894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


R x v x x( ) ( ; )
n

n n1 0
0

1 0 0∑ σ= ̅
=

∞

(24)

Here, v x x( ; )n 0 0̅ is a polynomial of nth degree in x0, which
depends on x F/0 0γ̅ = as a parameter. The functions v x x( ; )n 0 0̅
are variants of so-called Poisson−Charlier polynomials, whose
properties are described in detail in SI Section 4. Similar
expansions have found utility in spectral solutions of master
equations.42,43 The most important characteristic of these
polynomials is that they are orthogonal with respect to
averages over the Poisson distribution x x( ; )0 0Π ̅ defined in eq
4. If we denote f x f x x x( ) ( ) ( ; )x x 0⟨ ⟩ ≡ ∑ Π ̅̅ =

∞ , the average of a

function f(x) with respect to a Poisson distribution x x( ; )Π ̅ ,
then26,44

v x x v x x n x( ; ) ( ; )n n x
n

n n,δ⟨ ′ ̅ ̅ ⟩ = ! ̅ ′̅ (25)

The first few polynomials are given by

v x x v x x x x

v x x x x x

( ; ) 1 ( ; )

( ; ) ( )

0 1

2
2

̅ = ̅ = − ̅

̅ = − ̅ − (26)

Equation 25 allows the coefficients σ1n from eq 24 to be
evaluated in terms of moments with respect to x x( ; )0 0Π ̅

v x x R x

x n

( ; ) ( )
n

n x
n1

0 0 1 0

0

0σ =
⟨ ̅ ⟩

̅ !
̅

(27)

Using eq 26, we can write the first two coefficients as

R x x x x R x( ) ( ) ( )x x10 1 0 11 0
1

0 0 1 00 0
σ σ= ⟨ ⟩ = ̅ ⟨ − ̅ ⟩̅

−
̅ (28)

They have a simple physical interpretation: σ10 is the mean
production rate, and σ11 is a measure of how steep the
production changes with x near x ̅ , and they are exactly the
same as the coefficients in the linear expansion of eq 6. If σ1n ≠
0 for any n ≥ 2, then the production function R1(x0) is
nonlinear.
The exact expression for the error E derived in ref 26 takes

the form

E
x n x

n
1

( ) n

n
n

0 1 11
2

0 1
2 10

1

1
2

0

1 0

1

∑γσ
γ γ

σ
σ
γ γ

= − ̅
+

+
! ̅

+=

∞ −Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (29)

The nonlinear σ1n coefficients for n ≥ 2 contribute to the
expression in the brackets as n1

2σ multiplying a positive factor,
and hence if nonzero always act to increase the error regardless
of their sign. It turns out that eq 29 is bounded from below by
the N = 1 WK limit from eq 15

E E
2

1 1WK
1

≥ =
+ + Λ (30)

with x /( )1 0 11
2

10 0σ σ γΛ = ̅ . The WK limit is achieved when

11 0 1γ γ= + Λ , just as predicted by eq 17, and when R1(x0)

has the optimal linear form, R x x x( ) ( )1
opt

0 10 11 0 0σ σ= + − ̅ ,
with all σ1n = 0 for n ≥ 2.
Increasing the slope of R1(x0) at x x0 0= ̅ will increase σ11

and hence Λ1, progressively decreasing the EWK limit. This can
be seen in Figure 2, which illustrates different production
functions and the corresponding error values. Eventually, the
slope will become so steep that it is impossible to have a purely
linear function R1(x0) with that value of σ11. This is because σ11

must always be smaller than x/10 0σ ̅ to have a linear production
function that is everywhere non-negative, R1(x0) > 0 for all x0
≥ 0. σ11 can be arbitrarily large for very steep, sigmoidal
production functions R1(x0), but in this case, the error will be
significantly larger than EWK due to the contributions from the
nonlinear coefficients σ1n, n ≥ 2. We see this for the largest
values of Λ1 in Figure 2B, with the added error due to
nonlinearity overwhelming the benefit from large Λ1. In
summary, for the N = 1 no-feedback model, there is no way to
beat the WK limit, regardless of the choice of R1(x0).

Nonlinearity in the N = 1 TetR Negative Feedback
Circuit. Reference 28 studied an N = 1 negative feedback loop
inspired by data from an experimental synthetic yeast gene
circuit.45 In this circuit, TetR mRNA (the X0 species) leads to
the production of TetR protein (the X1 species), while the
protein in turn binds to the promoter of the TetR gene,
inhibiting the production of the mRNA. The model is similar
to eq 8 when N = 1

t
x t R x x t n t

t
x t R x x t x t n t

d
d

( ) ( ) ( ) ( )

d
d

( ) ( ) ( ) ( ( )) ( )

0 0 1 0 0 0

1 1 0 1 1 1 1

γ

γ

= − +

= − − Γ +
(31)

with a linear production function R1(x0) = σ11x0, but with a
sigmoidal Hill function form for the feedback R0(x1)

Figure 2. Case of a no-feedback N = 1 signaling model with a
nonlinear production function R1(x0) for parameters F = 1 s−1, γ0 =
0.01 s−1, σ10 = 100 s−1. (A) Examples of a variety of production
functions R1(x0), colored from red to yellow based on their steepness
at x0̅ and, hence, the size of the corresponding parameter Λ1.
Superimposed in black is the marginal distribution x x( ; )0 0Π ̅ of the
input species X0. (B) For the production functions shown in panel A,
the corresponding exact error E from eq 29 (circles) as a function of
Λ1. The WK bound EWK from eq 30 is shown in blue for comparison.
Adapted from ref 26 under the Creative Commons Attribution 3.0
License.
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ν ν
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Note that this model has an additional contribution to the
deactivation of the output, a function Γ(x1) that is also
sigmoidal:

x
A

x
( )1

2 2

2 1

2

2 2

θ
θ

Γ =
+

ν

ν ν
(33)

The parameters Ai, νi, θi, i = 1, 2 are all non-negative and
determine the shape of the two Hill functions, which are
common phenomenological expressions for regulatory inter-
actions in biology.41

Using numerical methods to solve the corresponding master
equation (similar to those described below), one can carry out
a parameter search to solve the following optimization
problem: With the constraints of fixed γ0, γ1, σ11, x0̅, x1̅ (and
hence also fixed Λ1 = σ11/γ0), one can vary the Hill function
parameters to find the smallest possible ϵ. The circles in Figure
3 show the optimization results for different Λ1 in the range Λ1

= 2−10, comparable to experimental estimates.46 The EWK
bound from eq 23 is shown for comparison as a solid curve.
The dashed curve shows an exact bound for the system,
derived by Lestas, Vinnicombe, and Paulsson (LVP)3 using
information theory, which applies when R1(x0) is linear and
where the negative feedback from X1 back to X0 can occur via
any function (linear or nonlinear). This exact bound is given
by

E
2

1 1 4LVP
1

=
+ + Λ (34)

Note that ELVP ≤ EWK, which opens the possibility that a
nonlinear system could fall somewhere between the two
curves, beating EWK. However, as we see in Figure 3, the
optimal numerical results were only able to approach from
above, and never outperformed, the WK limit.
On the basis of the nonlinear N = 1 results with and without

feedback described above, one could plausibly imagine that
WK theory somehow provides universal bounds. Despite the
fact that the WK limit was derived for linear systems, it
surprisingly gives a rigorous bound for the nonlinear no-
feedback model, and a numerical search to beat the limit
proved fruitless in the feedback case. However, as we
demonstrate in the next section, such a conclusion is
premature.

■ BEATING THE WK LIMIT

To explore the validity of the WK limit more broadly, we need
to be able to obtain precise error results in a wider range of
nonlinear signaling systems. In this section, we provide two
lines of evidence that demonstrate for the first time error
values below EWK. The first is from an N = 2 no-feedback
cascade with linear R1(x0) and quadratic R2(x1) production
functions. (We will prove that the related case, where R1(x0) is
nonlinear but R2(x1) linear, always gives E ≥ EWK.) These
results use an exact expression for E that is valid for any N > 1
no-feedback system, based on a recursion relation derived from
the master equation of eq 5 that can be evaluated numerically
to arbitrary precision. The second line of evidence is from an N
= 1 negative feedback loop with linear production function
R1(x0) and a feedback function ϕ(x1) that includes a quadratic
contribution. Here, a solvable recursion relation for E is not
possible, so we use a numerical solution of eq 5.

Exact Calculation of Error in the Nonlinear, Discrete
N > 1 Model without Feedback. In order to understand the
behavior of more complex nonlinear signaling cascades, we
need to generalize the exact N = 1 no-feedback error
expression from eq 29 to systems with N > 1. To start, let
us introduce some convenient notation to deal with multiple-
level systems. Along with the (N + 1)-dimensional vector x =
(x0, x1, ..., xN) that describes the full state of our system, we will
define the N-dimensional truncated vector

x x xx ( , , ..., )N0 1 1̂ = −

that is missing the final component xN. In a similar way, we
define the truncated N-dimensional unit vectors eî, i = 1, ..., N
− 1, where e (1, 0, ..., 0)0̂ = , e (0, 1, ..., 0)1̂ = , and so on
until e (0, ..., 0, 1)N 1̂ =− . Consider the following generating
function derived from the stationary distribution x

H y y( )
x

x
x x

0N

N∑=̂
=

∞

(35)

The subscript x ̂ denotes the fact that H y( )x ̂ depends on all
components x0 through xN−1, but xN has been eliminated
through the sum. If one carries out the sum over xN on both
sides of eq 5, one can rewrite the master equation entirely in
terms of generating functions

x H y x H y
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Here, the pth derivative of H y( )x ̂ with respect to y is denoted

as H y y H y( ) (d /d ) ( )p p p
x x
( ) ≡̂ ̂ . If we take p derivatives with

respect to y of both sides of eq 36, and then set y = 1, we get
the following relation

x H x H
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Figure 3. Fano factor ϵ for the TetR N = 1 negative feedback loop of
ref 28. Numerical optimization results are shown as circles, while the
WK and LVP lower bounds (eqs 23 and 34, respectively) are shown
as solid and dashed curves. Reproduced with permission from ref 28.
Copyright 2016 American Chemical Society.
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The above relation turns out to be the main one we need to
evaluate the scale-free error E. To see this, let us rewrite the
expression for E from eq 12 with the noise filter mapping
s t x t( ) ( )Nδ̃ ≡ , s(t) ≡ δx0(t):

E
s t s t

s t s t

x t x t
x t x t

x t x t x t x t
x t x t x t x t

1
( ) ( )

( ) ( )

( ) ( )
( ( )) ( ( ))

( ( ) ( ) ( ) ( ) )
( ( ) ( ) )( ( ) ( ) )

N

N

N N

N N

2

2 2

0
2

0
2 2

0 0
2

0
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2 2 2

δ δ
δ δ

= − ⟨ ̃ ⟩
⟨ ⟩⟨ ̃ ⟩

=
⟨ ⟩

⟨ ⟩⟨ ⟩

=
⟨ ⟩ − ⟨ ⟩⟨ ⟩

⟨ ⟩ − ⟨ ⟩ ⟨ ⟩ − ⟨ ⟩ (38)

All the moments on the right-hand side of eq 38 with respect
to the stationary distribution that involve xN(t) can in fact be

expressed in terms of H (1)p
x
( )
̂ :

x t x H

x t x t x x x H

x t x t x x H

( ) (1)

( ) ( ) (1)

( ) ( ) ( 1) (1)

N N

N N

N N N N
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x
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(1)

2 (2)

∑ ∑
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∑ ∑

⟨ ⟩ = =

⟨ ⟩ = =

⟨ ⟩ − ⟨ ⟩ = − =

̂

̂

̂

̂

̂

̂
(39)

Here, ...x xx 0 0N0
∑ ≡∑ ∑=

∞
=

∞ and ...x xx 0 0N0 1
∑ ≡∑ ∑̂ =

∞
=

∞
−

. The

remaining moments in eq 38, those that involve only x0(t), are
known from the fact that the marginal distribution of the input
X0 is just the Poisson distribution x x( ; )0 0Π ̅ of eq 4. This yields

x t x x t x x( ) ( )0 0 0
2

0
2

0⟨ ⟩ = ̅ ⟨ ⟩ = ̅ + ̅ (40)

Recall that the barred notation denotes the linearized
stationary averages defined in eq 7. Thus, the approach to
finding E is as follows: (i) Use eq 37 to derive properties of

H (1)p
x
( )
̂ that allow us to evaluate the moments in eq 39; (ii)

together with eq 40, we can then plug the moment results into
eq 38 to derive an expression for E. Here we will summarize
the final result, with the full details of the derivation shown in
SI Section 3.
To facilitate the solution, we expand the production function

in terms of Poisson−Charlier polynomials, just as in eq 24 for
the N = 1 case

R x v x x i( ) ( ; ) for 0i i
n

in n i i1
0

1 1∑ σ= ̅ >−
=

∞

− −
(41)

Each expansion coefficient is given by the analogue of eq 27,
averaging over a Poisson distribution

v x x R x

x n

( ; ) ( )
in

n i i i i x

i
n

1 1 1

1

i 1σ =
⟨ ̅ ⟩

̅ !
− − − ̅

−

−

(42)

To tackle H (1)p
x
( )
̂ , we will define new functions J p

x
( )
̂ through

the relation

H J x x(1) ( ; )p p
x x
( ) ( )≡ Π ̂ ̂̂ ̂ (43)

Here, x x( ; )Π ̂ ̂ is a multidimensional Poisson distribution

x x x x x xx x( ; ) ( ; ) ( ; )... ( ; )N N0 0 1 1 1 1Π ̂ ≡ Π ̅ Π ̅ Π ̅̂ − − (44)

Thus, any J 1p
x
( ) ≠̂ represents the deviation of H (1)p

x
( )
̂ from a

simple multidimensional Poisson distribution. Similarly, we
can define a multidimensional version of the Poisson−Charlier
polynomials

v v x x v x x v x xx x( ; ) ( ; ) ( ; )... ( ; )n n n N Nn 0 0 1 1 1 1N0 1 1
̂ ≡ ̅ ̅ ̅̂̂ − −− (45)

where n n nn ( , , ..., )N0 1 1̂ = − is an N-dimensional vector of

integers ni ≥ 0. Let us expand J p
x
( )
̂ in terms of these

polynomials

J v x x( ; )p p
x

n
n n

( ) ( )∑ μ= ̂ ̂
̂ ̂ ̂

̂ (46)

defining expansion coefficients p
n
( )μ ̂ . It turns out the moments

in eq 39 are all just linear combinations of the p
n
( )μ ̂ , which

follows from the properties of the Poisson−Charlier
polynomials averaged with respect to Poisson distributions:

x t

x t x t x

x t x t
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⟨ ⟩ = ̅ +

⟨ ⟩ − ⟨ ⟩ =

̂

̂ ̂+ ̂

̂ (47)

Here 0 (0, 0, ..., 0)̂ ≡ is the N-dimensional zero vector.
Plugging this into eq 38 gives

E
x

1
( )

( )
e0 0

(1) 2

0
(2)

0
(1)

0
(1) 2

0
μ

μ μ μ
= −

̅
+ −

̂+ ̂

̂ ̂ ̂ (48)

The final piece of the solution is converting eq 37 into a

recursion relation for the coefficients p
n
( )μ ̂ :
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p N
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(49)

with 10
(0)μ =̂ . The coefficients p i

n
( , )ν ̂ are given by the following

expansion in terms of σin and
p

n
( )μ ̂ :
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(50)

and C z( )k
mn are polynomials in z given by

C z z( )k
mn

c n k m k

m n k

kc
mn c

max(0, , )

2

∑= Γ
= − −

⌊ + − ⌋

(51)

with

m n
c c k m c k n m n k c( ) ( ) ( 2 )kc

mnΓ = ! !
! + − ! + − ! + − − !

(52)

Here the sum starts at the largest of the three values 0, n − k,
or m − k, and ⌊w⌋ denotes the largest integer less than or equal
to w.
The general procedure for calculating E works as follows:

1. For a given set of production functions Ri(xi−1), we
calculate the expansion coefficients σin using eq 42. If
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necessary, we truncate the expansion above some order
M, setting σin = 0 for n > M. In practice, because of the
rapid convergence of eq 41 for xi−1 near xi 1̅ − , choosing
M = 3 or 4 is sufficient. However, we can increase the
cutoff M to get whatever numerical precision we desire.

2. We plug the resulting σin into eq 50, and this in turn

defines the p i
n
( , )ν ̂ components that appear in eq 49.

3. We solve the recursive system of equations in eq 49 for

e0
(1)

0
μ ̂+ ̂ , 0

(1)μ ̂ , and 0
(2)μ ̂ , and we use these to find E from eq

48.

Though complex in appearance, the procedure is easy to
implement as a numerical algorithm, and with any finite cutoff
M is guaranteed to yield a value for E. As we increase M, we
generally quickly converge to the exact E for the system.
In some cases, the entire procedure can be carried out

analytically to give exact closed form expressions for E. When
N = 1, we recover the result in eq 29, as expected. Another
example is the N = 2 system where the first level production
function R1(x0) is arbitrary, but the second level function
R2(x1) is linear (and hence σ2n = 0 for n ≥ 2). Here E is given
by
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(53)

Just as in eq 29, any nonlinear contributions to R1(x0)
always increase E, since the coefficients σ1n for n ≥ 2 only
appear in the brackets in eq 53 as n1

2σ multiplying positive
factors. In this scenario, E ≥ EWK always, where EWK is given by
eq 13. As shown in SI Section 5, a similar story holds for N = 3
when only the first level production function is allowed to be
nonlinear. It is likely that nonlinearity only at the first level
cannot violate the WK bound for any N.
The simplest case where we are able to observe a violation of

the EWK limit is for N = 2 when R1(x0) is linear and the R2(x1)
is quadratic: σ1n = 0 for n ≥ 2 and σ2m = 0 for m ≥ 3. The
resulting analytical expression for E is complicated, but we can
investigate its optimal behavior numerically. In Figure 4, we

conducted a numerical minimization of E with respect to γ2
and the quadratic coefficient σ22 for various combinations of r
≡ γ1/γ0 and Λ1, keeping Λ2 fixed. If we denote this minimum
value Emin, Figure 4 shows log10|Emin/EWK − 1| with the cool
colored contours indicating Emin > EWK and warm colored
contours indicating Emin < EWK. In the purely linear case
described earlier, we found that E = EWK when the conditions
from eq 17 are satisfied, which corresponds to r 1 1= + Λ ,
shown as a dashed white curve in the figure. With the addition
of the quadratic term in R2(x1), the region near that curve now
supports solutions that beat the WK limit (the warm colored
band in Figure 4). However, the improvement relative to the
WK bound is exceedingly small, roughly 0.001−0.01% better.
To understand the small size of the improvement, let us look

at a subset of the parameter space that is analytically tractable.
Set the linear portions of the production functions to be
directly proportional to the upstream population, R1(x0) =
σ11x0 and R x x v x x( ) ( ; )2 1 21 1 22 2 1 1σ σ= + ̅ , which means

x/n n n1 0 1σ σ= ̅ − for n = 1, 2. Furthermore, imagine that the
conditions of eq 17 are fulfilled for γ1 and γ2, which means E =
EWK when the quadratic perturbation σ22 = 0. In this case Λ1 =
r2 − 1, with r ≡ γ1/γ0 > 1, and Λ2 = ρr, with ρ ≡ σ20/σ10. EWK
from eq 18 can then be written as

E
r r

r r
1

( 1)

(1 )(1 1 )
WK

2

2 2

ρ

ρ
= − −

+ + + (54)

Let us focus on the regime where signaling is at least as
effective as in many experimentally measured cascades,18−25

which means Imax ≳ 1 bit or equivalently EWK ≲ 1/4. This
generally requires r ≫ 1 and ρ ≫ 1. In this limit, the
complicated full expression for E simplifies, and we can expand
the difference E − EWK to second-order in the perturbation
parameter σ22

E E
r

x2 2
WK

0
22

0

0
2 2 22

2

γ ρ
σ

γ ρ
σ− ≈ + ̅

(55)

There is a minimum E = Emin at x r/(2 )22 0 0σ γ ρ= − ̅ , with

E E
x r
1

2min WK
0

2− ≈ −
̅ (56)

Figure 4. Contour plot of log 10|Emin/EWK − 1| for the N = 2 cascade with linear R1(x0) and quadratic R2(x1). The minimum value of the error Emin
at a given r = γ1/γ0 and Λ1 is found by numerical minimization with respect to γ2 and σ22, with fixed Λ2 = 5. Cool colors denote regions where Emin

> EWK and warm colors where Emin < EWK. The dashed white curve corresponds to r 1 1= + Λ .
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Though we can violate the EWK bound, the size of the violation
becomes small for r≫ 1. From eq 54, we know that EWK ∼ 2/r
for ρ, r ≫ 1, and hence, the relative magnitude
E E x r/ 1 (4 )min WK 0

1− ≈ − ̅
− . The negligible scale of the

improvement over EWK is consistent with the numerical results
of Figure 4, though the latter was calculated over a broader
portion of the parameter space. In SI Section 5, we also
considered the more complex N = 2 case where the production
functions at both levels are quadratic. This additional
nonlinearity can increase the magnitude of the violation, but
the benefit is generally small: Equation 56 becomes amended
with a correction term ∝ r−3.
Revisiting Nonlinearity in the N = 1 Model with

Feedback. The violation of the EWK bound in the no-feedback
case raises the question of whether similar results are possible
in the presence of feedback. We return to the N = 1 system
used for the TetR model above, but with several
simplifications: (i) We do not include the additional nonlinear
degradation term Γ(x1); (ii) rather than a Hill function for
R0(x1), we use eq 3, with a quadratic form for the feedback
function ϕ(x1)

x x x x x( ) ( ) ( )1 1 1 1 2 1 1
2ϕ ϕ ϕ= − − ̅ + − ̅ (57)

Note that the motivation here is not to create a quadratic
approximation of a Hill function. Since ref 28 did not find any
violation of EWK in extensive numerical tests with Hill
feedback, we surmised that higher-order nonlinear terms (ϕn
for n > 2 if the Hill function was written as full Taylor series
around x1̅) might have acted to keep E above EWK, similar to
what we found in eqs 29 and 53. Thus, we decided to use an
alternative, simpler form for the feedback, keeping only the
lowest-order nonlinear term (the quadratic one). This allows
us to focus on the effect of a simple nonlinear perturbation,
parametrized by ϕ2, and see whether we can now achieve E <
EWK.
Depending on the values of ϕ1 and ϕ2, there could be a

range of x1 where R0(x1) in eq 3 becomes negative, which is
unphysical. In our numerical calculations, we thus always use

max(R0(x1), 0) as the feedback function. However, for the
parameters we explored, the range of x1 where the sign switch
in R0(x1) occurs is far outside the typical range of stationary
state x1 fluctuations, so the precise details of the cutoff have a
negligible influence on the results. A final important difference
from the TetR model is that we will also investigate the regime
of smaller Λ1 (the numerics in the earlier study were confined
to Λ1 ≥ 2). On the basis of intuition from the no-feedback
case, we guess that any violation of the EWK bound might
become very small for large Λ1 and, hence, difficult to detect
numerically.
Though eq 57 has a simple form that is convenient for

parameter exploration, it has one feature that makes it
somewhat unrealistic from a biological perspective. For ϕ1 >
0, ϕ2 < 0 (the case that will be of interest to us below), the
slope dϕ(x1)/dx1 becomes positive for

x x x /(2 )1 1 1 1 2ϕ ϕ< * = ̅ +

corresponding to positive feedback for smaller x1 populations.
Since we would like to concentrate on systems with negative
feedback, we also define an alternative feedback function x( )1ϕ ̃
that avoids this issue by being constant for x x1 1≤ * and
monotonically decreasing for x x1 1> *:

x
x x x

x x x
( )

( )

( )
1

1 1 1

1 1 1

ϕ
ϕ

ϕ
̃ =

> *

* ≤ *

l
m
ooo
n
ooo (58)

As we will see below, it turns out that both ϕ(y) and y( )ϕ ̃
give qualitatively similar results.
The Poisson−Charlier expansion approach of the previous

example can also be applied to a general N-level feedback
system, yielding a set of coupled linear equations for the

coefficients p
n
( )μ ̂ analogous to eq 49. However, because of the

feedback interaction between xN and x0, these equations are no
longer particularly useful: lower-order coefficients depend on
higher-order ones in an infinite hierarchy of equations that has

Figure 5. (A) Numerically calculated Fano factor ϵ in the N = 1 nonlinear feedback system. The plots show ϵ versus ϕ2 for the quadratic feedback
function ϕ(x1) (blue) from eq 57 and the monotonic alternative x( )1ϕ ̃ (orange) from eq 58, using the parameters described in the text. The WK
bound EWK in shown as a dashed red line. The subgraphs depict cases with four different values of Λ1 between 0.25 and 1. (B) The Fano factor
results from panel A, using the feedback function x( )1ϕ ̃ , but normalized with respect to EWK. The dashed red line is ϵ/EWK = 1.
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no closure for any nonlinear ϕ(x1). We thus turn to an
alternative approach: solving the master equation, eq 5, for the
2D stationary probability x , where x = (x0, x1). Since x0 and
x1 can be any non-negative integer, eq 5 is an infinite linear
system of equations. To make it amenable to a fast numerical
solution, we truncate the range of allowable (x0, x1) to be
within six standard deviations of x0̅ and x1̅. We estimate the
standard deviations from the linear case (ϕ2 = 0), where closed
form expressions are available in terms of the system
parameters. The actual standard deviations in the presence of
nonzero ϕ2 for the parameter range we considered were not
perturbed significantly, so this estimation procedure worked
well. Similarly, x0̅ and x1̅ were good estimates for the actual
⟨x0⟩ and ⟨x1⟩, because the mean of the distribution shifts only
a small amount with ϕ2. The window established by this
procedure had a typical width of around ∼100 for x1 and ∼700
for x0 for parameters in the range described below. In eq 5, all

x outside the allowable range of x were set to zero. This
means that eq 5 becomes a finite system of linear equations
that can be solved efficiently using sparse matrix methods.
Once the stationary distribution is known numerically, one can
then easily calculate the error ϵ from eq 20 by finding the
marginal distribution of x0 and calculating its first and second
moments. We checked for convergence and boundary effects
by redoing the solution using window widths that were
different than six standard deviations and verified that the
results were unchanged up to the desired precision (<10−4 for
the calculation of ϵ). For select parameter sets, we also
validated the moments of the stationary distribution against
kinetic Monte Carlo simulations,47 though for the latter
achieving high precision is difficult because of the computa-
tional time required.
We used the following parameter values (all in units of s−1):

γ0 = 2, γ1 = 200, σ10 = 8000, σ11 = 2. The value of F was varied
to allow for a range of possible

x F/( ) /( )1 1 11
2

0 10 11
2

0
2

10σ γ σ σ γ σΛ = ̅ =

The value of ϕ1 was set to the optimality condition from eq 21

( 1 1)1
0 1

11
1ϕ

γ γ
σ

= + Λ −
(59)

where we have used the fact that Λeff = Λ1 for N = 1. This
guarantees that, in the linear feedback case of ϕ2 = 0, the
system should be close to the WK limit (up to correction
factors due to finite γ1, since technically the WK limit is only
approached in the feedback case when γ1 → ∞). Figure 5A
shows numerical results for the Fano factor ϵ as a function of
ϕ2 for different values of Λ1 between 0.25 and 1. In all cases for
linear feedback (ϕ2 = 0), we see that ϵ > EWK, where EWK is
given by eq 23. The fact that ϵ is above EWK for the linear
system is due to the fact that γ1 is finite. For the case ϕ2 > 0
(not shown in the graphs), the error increases, while for ϕ2 < 0
we see that the error decreases, until it dips below the EWK line
before increasing again. The choice of feedback function, ϕ(x1)
or x( )1ϕ ̃ , does not make a significant difference. Interestingly,
the violation of the WK bound is quite small, just as in the no-
feedback case, as we can see more clearly in Figure 5B, where
the ratio ϵ/EWK is plotted, in this case using the x( )1ϕ ̃ function.
The largest dip we observed is still only about 1.5% below EWK.
Moreover, in order to see any violation at all we had to look at
small Λ1 ≤ 1. In this regime, EWK is quite large, just below the

Poissonian Fano factor value of 1. Hence, the fluctuations are
only slightly reduced by the feedback. Once Λ1 becomes larger,
in the more biologically relevant regime where negative
feedback is effective at suppressing fluctuations, we found it
impossible to observe any violations of EWK. This could
possibly explain the lack of any evidence of violations in the
earlier TetR study28 (see Figure 3), where only Λ1 ≥ 2 was
considered. Though the figures show results for only one set of
parameter values, other sets we tried produced qualitatively
similar results: The nonlinear case beat the WK limit for small
Λ1, but it was always by a small amount.

■ CONCLUSIONS
Using a combination of analytical and numerical approaches,
we have been able to show that the Wiener−Kolmogorov
optimal error EWK is not a universal lower bound for biological
signaling cascades, both with and without feedback. However,
far from undermining the usefulness of the WK theory, our
results actually strengthen its practical value as a general
purpose approximation to estimate performance limits in
signaling systems. In some cases, for example, the N = 1 or N =
2 no-feedback systems with nonlinear production in the first
level, the EWK bound continues to hold rigorously despite
nonlinearity. Also, in all cases where the bound is broken, the
extent of the violation is negligible and decreases or vanishes in
the regime where the system is effective at its respective task
(either propagating the upstream signal with high fidelity or
suppressing fluctuations). Further study is needed to see if the
performance gain beyond the EWK bound can be made
substantial, for example, by combining the effects of non-
linearity from multiple levels in the cascade. However,
additional nonlinearity is not necessarily beneficial: In eqs 29
and 53, and as depicted in Figure 2, each higher-order
nonlinear contribution pushes us further away from the EWK
limit.
Thus, for practical purposes, the WK approach remains an

excellent way to derive biological bounds that remain
meaningful even when the underlying assumptions of the
theory (like linearity) no longer strictly hold. Equally
importantly, the theory allows one to ascertain under what
conditions one can actually achieve this kind of optimality. In
all the signaling systems investigated so far, EWK is either
directly attainable or can be asymptotically approached by
tuning parameters. This is in contrast to a rigorous bound like
ELVP from eq 34, which holds for arbitrarily complex feedback
mechanisms in a system with linear production. However, it
has overestimated the optimal capabilities of all the feedback
networks we have investigated: None of our systems ever gets
close to ELVP. A recent example of the versatility of the WK
theory is the study of kinase-phosphatase signaling networks in
ref 15. A simple analytical WK bound, derived from a
linearized N = 1 network, explains a previously unknown
optimal relationship among signal fidelity, bandwidth, and
minimum ATP consumption. It holds across a vast biological
parameter space deduced from bioinformatic databases and
remains valid even when all the microscopic, nonlinear
reaction details of the system are taken into account. The
robustness of the WK bound, highlighted in the results of the
current study, help us understand the theory’s success in such
contexts.
Beyond future applications of WK theory to other specific

systems, and possible experimental validation, there is still
work to be done in developing the analytical techniques (like
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the Poisson−Charlier expansion) which we used for the no-
feedback cascade. Exact results in nonlinear systems are
relatively rare and hence valuable in themselves, and also as
benchmarks for a variety of simpler approximations like the
WK theory. The expansion method we described is currently
limited by cases where the recursive system of equations does
not close (i.e., in the presence of feedback, and more generally
in biochemical networks with loops). Carefully tailored
moment closure approaches48 might provide a way forward
and broaden the applicability of the method to systems with
different types of feedback and other more complex network
motifs.
Finally, it will be interesting to explore the relationship

between WK theory and other intrinsic bounds satisfied by
thermodynamic systems. The recently developed thermody-
namic uncertainty relation (TUR),4,49 for example, provides a
bound on the variance of current-like observables in a wide
range of systems, expressed in terms of energy dissipation. A
case like our negative feedback cascade, where decreasing the
variance of the X0 species requires a significant expenditure of
resources, might be possible to reformulate as a TUR problem.
Does WK optimal signaling saturate the TUR bound? A deeper
understanding of these kinds of interconnections will help us
better delineate the fundamental limits of biological processes.
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1 Deriving the WK optimal filter results for the multi-level cascade without feedback

1.1 Mapping the system onto a noise filter
The starting point for the derivation is the system of equations in main text Eq. (9), with q1 = 0 in the absence of
feedback:

3

3C
XG0(C) = −W0XG0(C) +=0(C),

3

3C
XG8 (C) = −W8XG8 (C) +f81XG8−1(C) +=8 (C), 8 > 0,

(S1)

where the Gaussian noise functions satisfy 〈=8 (C)= 9 (C ′)〉 = 2X8 9W8 Ḡ8X(C− C ′). Taking the Fourier transform of Eq. (S1),
we can solve the system of equations for the fluctuation functions XG8 (l) in Fourier space,

XG0(l) =
=0(l)
W0− 8l

,

XG 9 (l) =
1

W 9 − 8l
(
f91XG 9−1(l) += 9 (l)

)
, 9 > 0,

(S2)

S1



with 5 (l) denoting the Fourier transform of a function 5 (C). Iteratively plugging the result for XG 9−1(l) into the
XG 9 (l) equation, starting from 9 = 1, we can solve Eq. (S2) to get the following expressions for the Fourier space
input and output fluctuations:

XG0(l) =
=0(l)
W0− 8l

,

XG# (l) =
©«
#∏
9=1

f91

W 9 − 8l
ª®¬
XG0(l) +

#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

 .
(S3)

Let us compare the result for XG# (l) to the Fourier transform of main text Eq. (10), the noise filter convolution
integral:

B̃(l) = � (l) (B(l) +=(l)). (S4)

We can make a mapping of the system to a linear noise filter with the following choice of estimate, signal, noise, and
filter function:

B̃(l) = XG# (l), B(l) = XG0(l), =(l) =
#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

, � (l) =
#∏
9=1

f91

W 9 − 8l
. (S5)

1.2 Concise overview of WK optimal filter theory
To apply WK theory to our problem, let us summarize its main results (see Ref. 1 for a more detailed review). Given a
Fourier-transformed signal and noise functions B(l) and =(l), let us denote the corresponding power spectra %B (l)
and %= (l). The spectra are defined through the relation 〈 5 (l) 5 (l′)〉 = 2c% 5 (l)X(l+l′), where 5 = B or =. For
the signal corrupted by noise, H(l) ≡ B(l) +=(l), the corresponding power spectrum is %H (l) = %B (l) +%= (l) if
the noise is uncorrelated with the signal. This is indeed the case, since the Gaussian noise functions = 9 (l) in Eq. (S5)
that contribute to =(l) are uncorrelated with =0(l), the function that enters into the signal XG0(l) in Eq. (S3).

Once %B (l) and %B (l) are specified, one can find a corresponding optimal filter function �WK(l). Optimality
here means that the time-domain function �WK(C), plugged into the convolution integral of main text Eq. (10),
minimizes the error n (B(C), B̃(C)) between the estimate and signal defined in main text Eq. (11). In Fourier space the
optimal filter takes the following form if signal and noise are uncorrelated2:

�WK(l) =
1

%+H (l)

{
%B (l)
(%+H (l))∗

}
+
. (S6)

The + superscripts and subscripts denote two types of causal decompositions. For example, the function %+H (l) is
defined via %H (l) = |%+H (l) |2, where the factor %+H (l) is chosen such that it has no zeros or poles in the upper half-
plane. This decomposition always exists for all the physical power spectrawe encounter in signaling contexts. The other
decomposition, denoted by {� (l)}+ for a function � (l), can be calculated from {� (l)}+ ≡ F [Θ(C)F −1 [� (l)]].
Here F [ 5 (C)] indicates the Fourier transform of a function 5 (C), F −1 the inverse Fourier transform, and Θ(C) is a
unit step function3. In practice, it is often convenient to calculate it through an alternative method: doing a partial
fraction expansion of � (l) and keeping only those terms with no poles in the upper half-plane.

To find the lower bound on n , we inverse Fourier transform �WK(l) back to the time domain. The minimum
error �WK can then be expressed compactly in the following form, which is convenient for calculations:

�WK = 1− 1
�B (0)

∫ ∞

0
3C�WK(C)�B (C), (S7)

where �B (C) = F −1 [%B (l)] is the signal autocorrelation function, given by the inverse Fourier transform of its power
spectrum.
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1.3 Calculating the optimal filter function �WK
Given Eqs. (S3), (S6), and the properties of the Gaussian noise functions = 9 (C), which in Fourier space satisfy
〈=8 (l)= 9 (l)〉 = 4cX8 9W8 Ḡ8X(C − C ′), the power spectra for the signal and noise can be written as:

%B (l) =
2�

l2 +W2
0
, (S8a)

%= (l) =
2�
W2

0

#∑
9=1

1
Λ 9

[
9−1∏
:=1

(l2 +W2
:
)

W0W:Λ:

]
. (S8b)

Here we have used the facts that Ḡ0 = �/W0, Ḡ8 = f80/W8 for 8 > 0, and have introduced the dimensionless constants
Λ 9 ≡ Ḡ 9−1f

2
91/(f90W0). Summing %B (l) and %= (l), we can write %H (l) in the form:

%H (l) =
2�

W2
0 (l2 +W2

0)
�(8l), (S9)

where �(_) is the polynomial from main text Eq. (14),

�(_) = W2
0 +

#∑
9=1
W

2− 9
0

9∏
:=1

W2
:−1−_

2

W:−1Λ:
. (S10)

This is a polynomial of degree 2# in _, and hence has 2# roots. Because the coefficients of _ in the polynomial
are real, the conjugate of any complex root must also be a root. Finally, because only even powers of _ appear in
�(_), the negative of a root is also a root. Putting all these facts together ensures that there will always be # roots
_ 9 where Re(_ 9) > 0, and the other # roots are just −_ 9 . Moreover, among the set of _ 9 , any complex roots come
in conjugate pairs. This guarantees that the expression for �WK in main text Eq. (13) is always real. Note that the
choice of ordering of the roots _ 9 , 9 = 1, . . . , # is arbitrary, since it does not affect the result. Taking all this into
account, we can factor �(8l) in the following way:

�(8l) = W2
0

(
#∏
:=1

1
W0W:−1Λ:

) 
#∏
9=1
(l+ 8_ 9)



#∏
9=1
(l− 8_ 9)

 . (S11)

Since l = −8_ 9 for 9 = 1, . . . , # are all the zeros of �(8l) in the complex lower half plane, this enables us to write
down the decomposition %H (l) = %+H (l) (%+H (l))∗ where

%+H (l) =
√
 

l+ 8W0

#∏
9=1
(l+ 8_ 9), (S12a)

(%+H (l))∗ =
√
 

l− 8W0

#∏
9=1
(l− 8_ 9), (S12b)

and

 = 2�
#∏
:=1

1
W0W:−1Λ:

. (S13)

Continuing with the calculation of �WK(l), we see that:

%B (l)
(%+H (l))∗

=
2�

√
 (l+ 8W0)

#∏
9=1

1
l− 8_ 9

. (S14)
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The quantity
{
%B (l)
(%+H (l))∗

}
+
is computed from taking the causal part of the partial fraction decomposition of Eq. (S14).

Because the only causal pole (pole in the lower half plane) of Eq. (S14) is −8W0, all other terms in the decomposition
are dropped, yielding:{

%B (l)
(%+H (l))∗

}
+
=

2�8#

�
√
 (l+ 8W0)

, (S15)

where � =
∏#
9=1(W0 +_ 9). Finally, we can divide this result by %+H (l), following Eq. (S6), giving us the optimal

filter:

�WK(l) =
2�8#

� 

#∏
9=1

1
l+ 8_ 9

=
2�
� 

#∏
9=1

8

l+ 8_ 9

=
2�
� 

#∏
9=1

1
_ 9 − 8l

.

(S16)

Plugging in the definitions of � and  , we can rewrite the prefactor to get the final form for the optimal filter function:

�WK(l) =
#∏
:=1

W0W:−1Λ:
(W0 +_:) (_: − 8l)

. (S17)

1.4 Calculating the optimal error �WK
To calculate �WK from Eq. (S7), we first take the inverse Fourier transform of �WK(l) from Eq. (S17), which gives
a sum of exponentials in the time domain,

�WK(C) = Θ(C)
©«
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)
ª®¬
[
(−1)#−1

#∑
:=1

4−_: C
∏
<≠:

1
_: −_<

]
. (S18)

Using the fact that �B (C) = F −1 [%B (l)] = Ḡ0 exp(−W0 |C |), we can evaluate the integral in Eq. (S7) to find

�WK = 1− ©«
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)
ª®¬
[
(−1)#−1

#∑
:=1

1
W0 +_:

∏
<≠:

1
_: −_<

]
. (S19)

Reversing the partial fraction decomposition,

#∏
:=1

1
H +_:

=

#∑
:=1

1
H +_:

∏
<≠:

1
_<−_:

= (−1)#−1
#∑
:=1

1
H +_:

∏
<≠:

1
_: −_<

,

(S20)

with H = W0, the error reduces to the value in main text Eq. (13):

�WK = 1−
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)2
. (S21)
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1.5 Conditions under which the system can achieve WK optimality
In order for the system to attain � = �WK, the parameters must be tuned such that � (l) ∝ �WK(l), where � (l)
and �opt(l) are given by Eqs. (S5) and (S17) respectively. Comparing the two functions, we see that they are
proportional to one another when _ 9 = W 9 for all 9 = 1, . . . , # . Satisfying this condition actually requires a certain
relationship between the different per-capita deactivation rates W 9 and the Λ 9 parameters.

To see this, let us first denote �# (_) as the polynomial from Eq. (S10) for a particular value of # . The explicit
forms of the polynomials for the first few values of # are as follows:

�1(_) = W2
0 +

W2
0 −_

2

Λ1
,

�2(_) = W2
0 +

W2
0 −_

2

Λ1
+
(W2

0 −_
2) (W2

1 −_
2)

W0W1Λ1Λ2
,

�3(_) = W2
0 +

W2
0 −_

2

Λ1
+
(W2

0 −_
2) (W2

1 −_
2)

W0W1Λ1Λ2
+
(W2

0 −_
2) (W2

1 −_
2) (W2

2 −_
2)

W2
0W1W2Λ1Λ2Λ3

.

(S22)

Consider the # = 1 system. There is one root _1 with a positive real part, and we set it to _1 = W1 to satisfy the
condition. This requires that �1(W1) = 0, which occurs when W1 = W0

√
1+Λ1. Interestingly, this same value of W1

will also be a root for all higher polynomials # > 1. Because the additional terms in the higher polynomials all
contain a (W2

1 −_
2) factor, we see that �# (W1) = �1(W1) = 0 for # > 1.

Thus �2(_) has one root _1 = W1 = W0
√

1+Λ1 that we have already found, and a new root _2 = W2 whose value
we need to determine. This will be true iteratively at every higher value of #: the first # − 1 roots _ 9 = W 9 ,
9 = 1, . . . , # −1, will be the same roots as for �#−1(_), and there will one new root _# = W# . This follows from the
structure of the �# (_) polynomials, where

�# (W 9) = � 9 (W 9) = 0 for # > 9 . (S23)

We can find all the higher roots by induction. Let us assume that we have already found the values of _ 9 = W 9 for
9 = 1, . . . , # −1 and are interested in finding _# = W# . The known roots allow us to completely factor �#−1(_), and
from the definition of the polynomials in Eq. (S10) that factorization has to take the form:

�#−1(_) = W2
0

#−1∏
9=1

(W2
9
−_2)

W0W 9−1Λ 9
. (S24)

Note that we know the overall prefactor in the factorization above from the prefactor of the highest power _2(#−1) in
the definition of �#−1(_). Turning to �# (_), we can write this polynomial as �#−1(_) plus an added term,

�# (_) = �#−1(_) +
W0(W2

0 −_
2)

W#−1Λ#

#−1∏
9=1

(W2
9
−_2)

W0W 9−1Λ 9
. (S25)

Comparing Eq. (S25) to Eq. (S24), we see that

�# (_) = �#−1(_) +
(W2

0 −_
2)

W0W#−1Λ#
�#−1(_)

= �#−1(_)
[
1+
(W2

0 −_
2)

W0W#−1Λ#

]
.

(S26)

Setting the factor in the brackets to zero allows us to find the new root _# = W# in terms of the previous root W#−1,

W# = W0

√
1+ W#−1

W0
Λ# . (S27)
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Starting from the known value of W1 = W0
√

1+Λ1, we can iteratively use Eq. (S27) to find all the higher roots. The
solutions are the nested radical forms shown in main text Eq. (17),

W1 = W0
√

1+Λ1, W2 = W0

√
1+

√
1+Λ1Λ2, W3 = W0

√
1+

√
1+

√
1+Λ1Λ2Λ3, . . . . (S28)

When these conditions are satisfied, the expression for �WK simplifies to the form in main text Eq. (18),

�WK = 1−
#∏
8=1

ℓ8

(1+
√

1+ ℓ8)2
, (S29)

where ℓ8 = W8−1/Λ8/W0.

2 Deriving the WK optimal filter results for the multi-level cascade with feedback

2.1 Mapping the system onto a noise filter, finding the WK filter function and bound
The feedback derivation starts with main text Eq. (9), but with the q1 term present:

3

3C
XG0(C) = −W0XG0(C) −q1XG# (C) +=0(C),

3

3C
XG8 (C) = −W8XG8 (C) +f81XG8−1(C) +=8 (C), 8 > 0,

(S30)

The noise filter mapping is qualitatively different from the no feedback case, taking the form of main text Eq. (19),

B(C) ≡ XG0(C) |q=0, B̃(C) = XG0(C) |q=0− XG0(C). (S31)

We know the XG0(C) |q=0 solution in Fourier space already, having calculated it in Eq. (S3),

B(l) = XG0(l) |q0 =
=0(l)
W0− 8l

. (S32)

We can manipulate the Fourier space counterpart of Eq. (S30) to relate B̃(l) to B(l) through a noise filter equation,

B̃(l) = � (l) (B(l) +=(l)), (S33)

where

=(l) =
#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

, � (l) =
q1

∏#
9=1f91∏#

9=0(W 9 − 8l) +q1
∏#
9=1f91

. (S34)

Comparing to Eq. (S5), we see that B(l) and =(l) in this mapping are exactly the same as in the no feedback case.
Hence %B (l) and %= (l) are the same, which means the calculation of �WK and �WK is unchanged. The result for
�WK in Eq. (S21) serves as a lower bound for the error n .

2.2 Conditions under which the system can achieve WK optimality
Comparing � (l) from Eq. (S34) and �WK(l) from Eq. (S17), one sees that achieving � (l) = �WK(l), and hence
n = �WK, is non-trivial. However there is one scenario where this can be approximately fulfilled. We will show that
in a certain limit the #-level feedback system effectively behaves like an # = 1 level system with an effective Λ1
parameter. Note that the # = 1 version of %= (l) from Eq. (S8b) looks like:

%= (l) =
2�
W2

0Λ1
. (S35)
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Let us now consider an #-level system where W 9 � W0 for 9 > 0. The main frequency scale in the system is set by the
input signal, which has characteristic frequency W0, so typical frequencies l that are relevant to the system behavior
all share the property that l� W 9 for 9 > 0. If we use this simplification in Eq. (S8b), the noise power spectrum can
be approximated as:

%= (l) ≈
2�
W2

0

#∑
9=1

1
Λ 9

[
9−1∏
:=1

W:

W0Λ:

]
. (S36)

Comparing Eq. (S35) to Eq. (S36), we note that the multi-stage noise power spectrum is approximately the same
form as for an # = 1 system, except with Λ1 replaced by an effective parameter Λeff given by:

Λeff =
©«
#∑
9=1

1
Λ 9

[
9−1∏
:=1

W:

W0Λ:

]ª®¬
−1

. (S37)

For the special case where the production functions ' 9 (G 9−1) = f91G 9−1, and hence f91 = f90/Ḡ 9−1 for 9 > 0, the
expression for Λeff simplifies to the result shown in main text Eq. (22):

Λeff =
1
�


#∑
9=1

1
f90


−1

. (S38)

The corresponding # = 1 optimal filter �WK(l) from Eq. (S17), with Λeff instead of Λ1, can be expressed as:

�WK(l) =
W0(
√

1+Λeff−1)
W0
√

1+Λeff− 8l
. (S39)

Here we have used the fact that _1 = W0
√

1+Λ1 is the root for �1(_) from Eq. (S22), and substituted in Λeff.
Let us now write � (l) from Eq. (S34) using the approximation l� W 9 for 9 > 0,

� (l) ≈
q1

∏#
9=1f91

(W0− 8l)
∏#
9=1 W 9 +q1

∏#
9=1f91

. (S40)

We can thus approximately have � (l) ≈ �WK(l) from Eq. (S39) when the feedback strength is tuned to the value
from main text Eq. (21),

q1 = W0(
√

1+Λeff−1)
#∏
9=1

W 9

f91
, (S41)

which then ensures that n ≈ �WK, with the latter having the # = 1 form,

�WK =
2

1+
√

1+Λeff
. (S42)

3 Exact error calculation in the nonlinear cascade without feedback
This section fills in the details of the calculation that transforms main text Eq. (37), a relation for the generating
function �x̂ (H) and its derivatives � (?)x̂ (H), into the recursion relation of main text Eq. (49). The ultimate goal is
to use the recursion relation to find the coefficients ` (?)n̂ in order to evaluate the exact error � given by main text
Eq. (48):

� = 1−
Ḡ0

(
`
(1)
0̂+ê0

)2

`
(2)
0̂
+ ` (1)

0̂
−

(
`
(1)
0̂

)2 . (S43)
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Recall the expansions defined in the main text for all the quantities of interest:

'8 (G8−1) =
∞∑
==0

f8=E= (G8−1; Ḡ8−1) for 8 > 0,

�
(?)
x̂ =

∑̂
n

`
(?)
n̂ En̂ (x̂; ˆ̄x),

(S44)

where

�
(?)
x̂ =

�
(?)
x̂ (1)
Π(x̂; ˆ̄x)

. (S45)

Here we use the multi-dimensional versions of the Poisson distributions and Poisson-Charlier polynomials,

Π(x̂; ˆ̄x) ≡ Π(G0; Ḡ0)Π(G1; Ḡ1) · · ·Π(G#−1; Ḡ#−1),
En̂ (x̂; ˆ̄x) ≡ E=0 (G0; Ḡ0)E=1 (G1; Ḡ1) · · ·E=#−1 (G#−1; Ḡ#−1).

(S46)

More details on the Poisson-Charlier polynomials can be found in the next section of the SI, which provides a brief
guide to their most useful properties.

Since we know the production functions '8 (G8−1) for our system of interest, we can easily find the coefficients
f8= in Eq. (S44), using main text Eq. (42). To derive the coefficients ` (?)n̂ , we start with the relation in main text
Eq. (37):

0 =
#−1∑
8=0

{
W8 [(G8 +1)� (?)x̂+ê8 (1) − G8�

(?)
x̂ (1)] +'8 (G8−1) [� (?)x̂−ê8 (1) −�

(?)
x̂ (1)]

}
− ?W#� (?)x̂ (1) + ?'# (G#−1)� (?−1)

x̂ (1).

(S47)

Using Eq. (S45) and the fact that Poisson distributions satisfy (G8 + 1)Π(G8 + 1; Ḡ8) = Ḡ8Π(G8; Ḡ8), we can rewrite
Eq. (S47) in terms of the � (?)x̂ functions:

0 =

{
#−1∑
8=0

W8 [Ḡ8� (?)x̂+ê8 − G8�
(?)
x̂ ] +'8 (G8−1) [G8 Ḡ−1

8 �
(?)
x̂−ê8 − �

(?)
x̂ ] − ?W# �

(?)
x̂ + ?'# (G#−1)� (?−1)

x̂

}
Π(x̂; ˆ̄x). (S48)

Let us introduce one more expansion, for products of the '8 (G8−1) and � (?)x̂ functions,

'8 (G8−1)� (?)x̂ =
∑̂
n

a
(?,8)
n̂ En̂ (x̂; ˆ̄x). (S49)

Because '8 (G8−1) and � (?)x̂ have their own individual expansions in terms of the Poisson-Charlier polynomials,
defined by Eq. (S44), the coefficients a (?,8)n̂ are entirely determined by the coefficients f8= and ` (?)n̂ of the individual
expansions. This relation, a property of the Poisson-Charlier polynomials, is explained in more detail in SI Sec. 4.5.
It takes the form:

a
(?,8)
n̂ =

∞∑
0,1=0

0+1≥=8−1
|0−1 | ≤=8−1

f80`
(?)
n̂+(1−=8−1) ê8−1

�01=8−1 (Ḡ8−1), (S50)

where �<=
:
(I) are polynomials defined in Eqs. (S66)-(S67).
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Let us define 〈 5 (x̂)〉 ˆ̄x =
∑

x̂ 5 (x̂)Π(x̂; ˆ̄x) as the average of a function 5 (x̂) with respect to Π(x̂; ˆ̄x). Using the
recursion relationships for Poisson-Charlier polynomials shown in Eq. (S64), one can prove the following useful
identities: 〈

En̂ (x̂; ˆ̄x)� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)` (?)n̂ ,〈

En̂ (x̂; ˆ̄x)'8 (G8−1)� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)a (?,8)n̂ ,〈

En̂ (x̂; ˆ̄x)G8'8 (G8−1)� (?)x̂−ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
a
(?,8)
n̂−ê8 + Ḡ8a

(?,8)
n̂

]
,〈

En̂ (x̂; ˆ̄x)� (?)x̂+ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂ + (=8 +1)` (?)n̂+ê8

]
,〈

En̂ (x̂; ˆ̄x)G8� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂−ê8 + (=8 + Ḡ8)`

(?)
n̂ + (=8 +1)Ḡ8` (?)n̂+ê8

]
,〈

En̂ (x̂; ˆ̄x)G8� (?)x̂−ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂−ê8 + Ḡ8`

(?)
n̂

]
,

(S51)

where Zn̂ ( ˆ̄x) ≡
∏#−1
8=0 =8!Ḡ=8 . By multiplying Eq. (S48) by En̂ (x̂; ˆ̄x) and summing over x̂, we can use the above

averages to obtain the following relation:

0 = −=0W0`
(?)
n̂ +

#−1∑
8=1

(
−W8` (?)n̂−ê8 −=8W8`

(?)
n̂ + Ḡ

−1
8 a
(?,8)
n̂−ê8

)
− ?W# ` (?)n̂ + ?a

(?−1,8)
n̂ . (S52)

We can rearrange this obtain the recursion relation in main text Eq. (49),

`
(?)
n̂ =

?a
(?−1,# )
n̂ +∑#−1

8=1

(
Ḡ−1
8
a
(?,8)
n̂−ê8 −W8`

(?)
n̂−ê8

)
?W# +

∑#−1
8=0 =8W8

. (S53)

This relation, together with ` (0)
0̂
= 1 which we know from the normalization property

∑
x̂ �x̂ (1) = 1, is sufficient for

us to calculate any coefficient ` (?)n̂ of interest.

4 Properties of the Poisson-Charlier polynomials

4.1 Definition of the polynomials
In this section, we summarize some properties of the polynomials E= (G; Ḡ) used in our analytical expansion approach
for calculating moments of master equations. These are variants of Poisson-Charlier (PC) polynomials4,5, 2= (G; Ḡ),
related by a trivial factor to the standard PC definition:

E= (G; Ḡ) = (−Ḡ)=2= (G; Ḡ). (S54)

The =th function E= (G; Ḡ) is a polynomial in G of degree =, depending on the parameter Ḡ. It is defined as follows:

E= (G; Ḡ) =
=∑
<=0

(
=

<

)
(−Ḡ)< (G)=−<. (S55)

Here (G): ≡ G(G−1) · · · (G− : +1) = :!
(G
:

)
is the :th falling factorial of G, with (G)0 ≡ 1. The first few polynomials

are given by:

E0(G; Ḡ) = 1, E1(G; Ḡ) = G− Ḡ, E2(G; Ḡ) = (G− Ḡ)2− G,
E3(G; Ḡ) = (G− Ḡ)3−3G(G− Ḡ) +2G.

(S56)

These E= (G; Ḡ) appear in a variety of master equation expansion approaches, for example the spectral method of
Refs. 6,7. In fact, E= (G; Ḡ) = =!〈=|G〉, where 〈=|G〉 is the mixed product defined in Eq. A8 of Ref. 6 (with Ḡ substituted
for the rate parameter 6).
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4.2 Orthogonality with respect to the Poisson distribution
One of the convenient properties of these polynomials is that they have simple averages with respect to the Poisson
distribution,

Π(G; Ḡ) = Ḡ
G4−Ḡ

G!
, (S57)

where G is a non-negative integer, and Ḡ is the parameter that defines the mean of the distribution, so that
Ḡ =

∑∞
G=0 GΠ(G; Ḡ). Let us denote the average of a function 5 (G) with respect to the Poisson distribution Π(G; Ḡ) in

the following way:

〈 5 (G)〉Ḡ ≡
∞∑
G=0

5 (G)Π(G; Ḡ). (S58)

Then the polynomials of Eq. (S55) satisfy the following orthogonality relationship8,9:

〈E=′ (G; Ḡ)E= (G; Ḡ)〉Ḡ = =!Ḡ=X=′,=. (S59)

Since E0(G; Ḡ) = 1, a special case of Eq. (S59) when =′ = 0 gives an expression for the mean:

〈E= (G; Ḡ)〉Ḡ = X=0. (S60)

4.3 Using the polynomials as a basis for function expansions
The polynomials form a basis in which one can expand arbitrary functions of populations 5 (G),

5 (G) =
∞∑
==0

U=E= (G; Ḡ), (S61)

for some coefficients U=. To calculate the <th coefficient U<, we multiply both sides of Eq. (S61) by E<(G; Ḡ) and
take the average with respect to Π(G; Ḡ):

〈E<(G) 5 (G)〉Ḡ =
∞∑
==0

U=〈E<(G; Ḡ)E= (G; Ḡ)〉Ḡ = U<<!Ḡ<, (S62)

where we have used the orthogonality relation Eq. (S59). Thus U< is given by:

U< =
〈E<(G; Ḡ) 5 (G)〉Ḡ

<!Ḡ<
=

<∑
==0

(−1)<−=Ḡ−=
(<−=)!

〈(
G

=

)
5 (G)

〉
Ḡ

, (S63)

where we have plugged in the definition of E<(G; Ḡ) from Eq. (S55). For the kinds of functions we ordinarily
encounter in working with master equations, the coefficients U< rapidly decay with <, so in practice we can often
form an excellent approximation by just keeping the first few (= ≤ 5) terms in the expansion of Eq. (S61)9.

4.4 Recursion relationships
The polynomials satisfy the following recursion relationships, as can be easily verified from their definition in
Eq. (S55):

GE= (G; Ḡ) = =ḠE=−1(G; Ḡ) + (=+ Ḡ)E= (G; Ḡ) + E=+1(G; Ḡ),
E= (G +1; Ḡ) = =E=−1(G; Ḡ) + E= (G; Ḡ),
GE= (G−1; Ḡ) = ḠE= (G; Ḡ) + E=+1(G; Ḡ).

(S64)
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4.5 Expanding the product of polynomials
The final property that comes in useful in calculations is that the product of two polynomials E<(G; Ḡ) and E= (G; Ḡ)
can be itself expanded in a linear combination of polynomials in the following form:

E<(G; Ḡ)E= (G; Ḡ) =
=+<∑

:= |=−< |
E: (G; Ḡ)�<=: (Ḡ), (S65)

where the coefficients �<=
:
(Ḡ) are polynomials in Ḡ given by:

�<=: (Ḡ) =
b<+=−:2 c∑

2=max(0,=−:,<−:)
Γ<=:2 Ḡ

2 . (S66)

Here, the sum starts at the largest of the three values 0, =− : , and <− : , and bIc denotes the largest integer less or
equal to I. The quantity Γ<=

:2
is defined as:

Γ<=:2 ≡
<!=!

2!(2+ : −<)!(2+ : −=)!(< +=− : −22)! . (S67)

Thus for example if one had two functions 5 (G) and 6(G) with individual expansions,

5 (G) =
∞∑
==0

U=E= (G; Ḡ), 6(G)
∞∑
==0

V=E= (G; Ḡ), (S68)

then the product can be expanded as

5 (G)6(G) =
∞∑
==0

W=E= (G; Ḡ), (S69)

with coefficients given by

W= =

∞∑
:,ℓ

:+ℓ≥=
|:−ℓ | ≤=

U: Vℓ�
:ℓ
= (Ḡ). (S70)

5 Additional results for nonlinear cascades without feedback

5.1 # = 2 cascade with nonlinear production functions at both levels
One example we considered in the main text was the # = 2 cascade without feedback where the first level production
function '1(G0) = f11G0 is linear and the second level production function '2(G1) = f21G1+f22E2(G1; Ḡ1) is quadratic.
In the limit A = W1/W0 � 1 and d = f20/f10 � 1, where signaling is efficient (�WK . 1/4), we get main text Eq. (55)
for the difference � −�WK. This is minimized in main text Eq. (56), showing a small violation of the WK bound:
�min−�WK ≈ −(2Ḡ0A

2)−1.
Here we generalize these results to the case where both production functions are quadratic, so that '1(G0) =

f11G0 +f12E2(G0; Ḡ0). Following the same approach as described in the main text, we find that for A � 1 and d� 1:

� −�WK ≈
2

W0dA
f22 +

2Ḡ0

W2
0d

2
f2

22 +
4Ḡ0

W2
0A

2d
f12f22 +

2Ḡ0

W2
0A

4
f2

12. (S71)

If we keep the parameter f12 fixed, we can minimize � at the following value of f22:

f22 = −
d(AW0 +2Ḡ0f12)

2A2Ḡ0
. (S72)
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The resulting minimum error value �min, generalizing main text Eq. (56) by adding a second term proportional to
f12, is given by:

�min−�WK ≈ −
1

2Ḡ0A2 −
2f12

W0A3 . (S73)

If f12 > 0, we see that the violation of the WK bound can be made larger through the additional nonlinearity at the
first level. However the A3 in the denominator keeps the f12 term small relative to �WK ∼ 2/A when A � 1, so the
overall magnitude of the violation generally remains tiny.

5.2 # = 3 cascade with a nonlinear production function only at the first level
Main text Eq. (53) shows � for an # = 2 system where the first level production function can be nonlinear, but the
second level one is linear (f2= = 0 for = ≥ 2). Here we generalize this to a # = 3 system with a nonlinear first level,
but all higher levels linear (f2= = f3= = 0 for = ≥ 2). The result can be expressed as:

� = 1− ND , (S74)

where

N =
W1W2 (W1 +W2) W3 (W1 +W3) (W2 +W3)f2

11f
2
21f

2
31Ḡ0

(W0 +W1) 2 (W0 +W2) 2 (W0 +W3) 2 , (S75)

and

D = f2
31

[
f2

21

( ∞∑
==1

=!
(
(W1 +W2) (W1 +W3) (W2 +W3) + (W1 +W2 +W3) W2

0=
2 + (W1 +W2 +W3) 2W0=

)
f2

1=Ḡ
=
0

(W1 +W0=) (W2 +W0=) (W3 +W0=)

+ (W1 +W2 +W3)f10

)
+W1 (W1 +W2) (W1 +W3)f20

]
+W1W2 (W1 +W2) (W1 +W3) (W2 +W3)f30.

(S76)

Qualitatively the behavior of � is similar to the # = 1 (main text Eq. (29)) and # = 2 (main text Eq. (53)) cases when
only the first level is nonlinear: f1= for = ≥ 2 contribute to the denominator D only through positive terms, and
hence always serve to make � larger than �WK. Given this pattern for # = 1−3, it is likely that the result generalizes
to cascades of any length: nonlinearity only at the first level cannot beat the WK bound.
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