
BIOREPS Problem Set #1
Switching dimensions: beating the di�usion speed limit

sliding:
"1D" diffusion
along DNA

3D diffusion
through cell
volume

DNA

transcription factor
protein

operator:
target for
protein search

transcription
factor

RNA
polymerase

Figure 1: Proteins on the hunt for their target on DNA. Illustration adapted from Alan Stonebraker
at: http://physics.aps.org/articles/v2/36.

1 Background
In order for any biological processes to take place, molecules need to �nd each other in the
crowded, thermally agitated interior of the cell. Our �rst encounter with this problem will be
one of the central questions of genetic regulation: how can a protein known as a transcription
factor (TF) quickly locate and bind to a speci�c target sequence on DNA? This is quite literally
a needle-in-a-haystack problem: �nding a single, unique string of ∼ 10 base pairs on a coiled
strand of DNA that could be millions of base pairs or longer. Once the TF �nds its target, it can
have one of two e�ects: (i) some TF’s are activators, meaning that they enhance the expression of
genes downstream from the target by recruiting RNA polymerase to the target. The polymerase
is a molecular machine that transcribes DNA into RNA, and the RNA will eventually be translated
into the proteins encoded by the genes. (ii) On the other hand, some TF’s are repressors, meaning

1



that they prevent RNA polymerase from binding and transcribing the genes near the target, thus
downregulating gene expression.

One of the most widely studied transcription factors is the lac repressor protein (LacI) of E.
coli. These bacteria have the ability to digest the sugar lactose when it is present in the environ-
ment. However, if they �nd themselves in a situation without lactose, LacI allows them to turn o�
the genes encoding the protein enzymes that metabolize lactose, thus conserving energy by not
producing unnecessary proteins. About ten copies of the repressor protein are always present
in the cell, which is normally su�cient to keep the lactose metabolism genes turned o�. If E.
coli wants to switch lactose digestion back on (when lactose becomes available again), it converts
some of the lactose into a form that binds LacI and prevents its association with DNA. This is
the canonical example of a so-called genetic switch, and in fact it was the �rst one discovered, de-
scribed in a landmark paper in 1961 by François Jacob and Jacques Monod, future Nobel laureates
in medicine [1]. (The same paper predicted the existence of messenger RNA, the product of RNA
polymerase reading the DNA, which was soon thereafter con�rmed experimentally.)

This paper set o� an explosion of research to identify and characterize protein transcription
factors and their interactions with DNA. Surprisingly, the unassuming lac repressor maintained
its place in the spotlight: not content to be merely �rst, it turned out to be also uncannily fast.
About a decade after the discovery of LacI, Riggs and coworkers measured the rate at which LacI
associated with its target, an astonishing k ∼ 1010 M−1 s−1. If this was solely due to three-
dimensional di�usion—the protein wandering randomly through the cell until it collides with
the tiny bit of DNA that is the target sequence—we could use the Smoluchowski reaction rate
equation to estimate the corresponding value of D, the protein di�usion constant:

kSmol = 4πDR

Here R is the radius of the target, R ∼ 1 nm, which translates to an apparent D ≈ 1300 µm2/s.
This is an exceedingly large di�usion constant, essentially impossible for a protein inside the
cell: it is at least ten times larger than the average D for proteins in water, and more than a
hundred times larger than the typical value for proteins in the crowded cell interior, D ∼ 10
µm2/s. To make the result more concrete, imagine a single LacI protein and a single target in the
E. coli cell volume, V ≈ 1 µm3. The average time from the protein to �rst reach that target by
three-dimensional di�usion alone is

τ3D =
V

4πDR
,

assuming the initial separation of the two is much larger thanR. The di�erence betweenD ≈ 10
and 1300 µm2/s is the di�erence between having a search time of 8 s versus 0.06 s. Given that D
cannot be 1300 µm2/s, how can LacI achieve a short search time such as 0.06 s?

If we accept that D ≈ 10 µm2/s for the protein and that τ3D = 8 s, clearly three-dimensional
di�usion alone (what we will call the “3D strategy”) is insu�cient to explain the experimental
results. So the protein must employ another strategy. It turns out that transcription factors have
regions on their surface that are positively charged, and when these regions come within a few
nanometers of the negatively-charged backbone of DNA, there is an electrostatic attraction. This
attraction is strong enough to keep the protein within the vicinity of the DNA for some time, but
weak enough that the protein can slide back and forth randomly along the DNA contour, which
e�ectively looks like a di�usive random walk on a one-dimensional track de�ned by the DNA
chain. If the protein does �nd its target sequence, hydrogen bonding interactions can form in

2



Figure 2: Experimental evidence of 1D protein di�usion on DNA, taken from Ref. [5]. The blurry
red lines represent a segment of DNA, labeled by red �uorescent markers. Each row from top to
bottom is a snapshot at a particular time, indicated by the scale on the right. The left green dot,
highlighted by the arrow at t = 0, is a �uorescently labeled LacI protein (the right green dot is a
labeled reference point). The protein jumps onto the DNA, di�uses randomly to the left and right
for some time, and then jumps o�. The motions of the protein can be converted to the trajectory
shown on the left. Hundreds of these trajectories can be gathered and analyzed to calculate a
sliding di�usion constant Dslide for the lac repressor.

addition to electrostatic attraction, which lock the protein strongly into place and stop the 1D
di�usion.

What if the protein was always electrostatically attached to the DNA? We could call this the
pure “1D strategy” of target search, since the protein never detaches to wander through the full
3D volume of the cell. There is a problem with this strategy as well: sliding along the DNA is an
extremely slow process, with a di�usion constant Dslide ≈ 0.01 µm2/s, two orders of magnitude
smaller than a free protein di�using through the cell interior. As you will calculate below, the
search time τ1D for the 1D strategy as a result is also much larger than the experimentally observed
value. You will �nd that τ1D is in fact comparable to τ3D. Even though being con�ned to one
dimension restricts the number of possible paths you can take to �nd the target, the slow di�usion
on the 1D track counteracts this potential advantage.

So we have two strategies that do not quite work, and are about equally slow. What about
adopting a mixture of the two? The protein spends some time di�using on the DNA, but it can
also dissociate, wander across the cell, and reattach to another part of the DNA. This process

3



is repeated until the target is found. By tuning the balance of 1D and 3D di�usion just right, it
turns out we can achieve target search times that are smaller than either of the two strategies
alone. In other words, we can beat the 3D (and the 1D) di�usion speed limits! This somewhat
counterintuitive result was laid out in a classic paper by Berg, Winter, and von Hippel in 1981.
In this problem set, we will prove a simpli�ed version of their argument, following the elegant
derivation of Mirny et al. [4]. This mixed 1D+3D strategy has come to be known as facilitated
di�usion.

Though the broad outlines of the theory are well established, �guring out the physical details
of the search process continues to be an active research area. The remarkable thing about the
Berg-Winter-von-Hippel model is that theory predicted a physical mechanism in 1981 that could
not be directly veri�ed by experiment for another 31 years. It was a pure triumph of mathematical
intuition. But the major question remained: was the 1D+3D strategy actually used by cells to
speed up the search process? Only in the last decade have experimentalists been able to directly
con�rm that proteins can indeed slide along DNA: by attaching a �uorescent label to individual
proteins and then monitoring their di�usive motion, they could watch single proteins jump onto
a strand of DNA, di�use for a certain time along its contour, and then jump o�. One example of
this, taken from a 2006 study by Wang et al. [5], is shown in Fig. 2. Finally, in 2012 Johan Elf and
collaborators were able to observe facilitated di�usion of LacI in a living cell [6], the end of an
experimental saga that began four decades earlier.

Note: All references are available in the Resources section of the course website.

References
[1] Jacob, F. and Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol.

Biol. 3, 318–356 (1961).

[2] Riggs, A. D., Bourgeois, S. and Cohn, M. The Lac repressor-operator interaction: 3. Kinetic
studies. J. Mol. Biol. 53, 401–417 (1970).

[3] Berg, O. G., Winter, R. B. and von Hippel, P. H. Di�usion-driven mechanisms of protein
translocation on nucleic acids: 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

[4] Mirny, L., Slutsky, M., Wunderlich, Z., Tafvizi, A., Leith, J. and Kosmrlj, A. How a protein
searches for its site on DNA: the mechanism of facilitated di�usion. J. Phys. A: Math. Theor.
42, 434013 (2009).

[5] Wang, Y. M., Austin, R. H. and Cox, E. C. Single molecule measurements of repressor protein
1d di�usion on DNA.Phys. Rev. Lett. 97, 048302 (2006).

[6] Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E. G., Berg, O. G. and Elf, J. The lac
repressor displays facilitated di�usion in living cells. Science 336, 1595–1598 (2012).

4



2 Questions

1D di�usion of a protein on DNA
To explore facilitated di�usion, we will use a combination of analytical and numerical approaches.
Let us �rst focus on characterizing pure 1D di�usion of a protein sliding along the DNA, without
detachment. Consider a single strand of DNA of length L. We will represent the position of the
protein on the DNA by x, where 0 ≤ x ≤ L. For our analytical calculations we will treat x as a
continuous variable, but for computations it is more convenient to discretize x as x = ia, where
i = 1, . . . , N and N ≡ L/a. For bacterial DNA, the true L may be on the order of mm, but we
will set L = 1000 nm to make the numerics faster. We choose a = 1 nm, making N = 1000. The
DNA in bacteria is a closed loop, so x = 0 is equivalent to x = L. In simulations, this means that
when the protein jumps from i = N to i = N + 1, the program should relabel N + 1 as i = 1.
(And similarly i = 0 becomes i = N .)

a) Write a program (in your favorite language) to simulate di�usion of a single protein along the
DNA, starting from an initial state i = i0 = N/2. The script should be in the form of a loop, from
time 0 to a certain end time t in steps of δt = 10−5 s. In each run of the loop, the system updates
the state i according to the following dynamics:

i→ i+ 1 with probability wδt
i→ i− 1 with probability wδt
i→ i with probability 1− 2wδt

The transition rate w is related to the sliding di�usion constant by w = Dslide/a
2. Use the value

Dslide ≈ 0.01µm2/s = 104nm2/s. Please see the Computational Hints section below for additional
information on how to implement a simulation of random dynamics. Note that in these types
of algorithms, δt has to be chosen small enough that the transition probabilities above are all
between 0 and 1. That is why we set δt to such a small value of 10−5 s. (We can make δt even
smaller, but our program would take longer to run.) To check that your program works, calculate
the mean squared displacement (MSD) 〈∆2

i 〉t = a2〈(i−i0)2〉t for several di�erent values of t. Keep
the range of t small enough that the protein is not able to reach i = 1 (or equivalently i = N+1).
For each value of t, calculating the MSD involves running several hundred trajectories of length
t, determining (i − i0)2 for the �nal state i in each trajectory, and then taking the average. Plot
〈∆2

i 〉t versus t, and compare it to the theoretical prediction 〈∆2
i 〉t = 2Dslidet. If the numerics and

theory do not agree, check that you have used enough trajectories to get convergent averages.

b) Let us model a 1D search for a target site on the DNA. Make the target site i = 1 (equivalent
to i = N + 1), and modify your program from part a) in the following way: choose the starting
position i0 at t = 0 randomly from the possible range 1 to N . Then run the program until either
i = 1 or i = N+1 is reached. Record the time twhen this happens. Repeat this procedure several
hundred times to �nd the average time it takes to reach the target from a random position on the
DNA. This average time is what we called τ1D above.

c) Does the numerical result of part b) make sense? To check this, let us solve the problem ana-
lytically. In class, we saw that in the continuum approximation we can write down the following

5



equation for the average time τ(x) to go from a starting position x to our target site:

Dslide
d2τ(x)

dx2
= −1.

The boundary conditions are τ(0) = 0 and τ(L) = 0, since x = 0 (equivalent to x = L for
the DNA loop) is our target location. Solve this equation to �nd τ(x). (Make sure the boundary
conditions are satis�ed!) Since τ(x) is the average time from a particular starting point x, we
need to average this over all possible starting locations. In the continuum limit, this average is
just an integral over x, divided by L, the range of possible x:

τ1D =
1

L

∫ L

0

dx τ(x).

Find an analytical expression for τ1D. Plug in the parameter values, and you should get the same
numerical answer as in part b), within the margin of statistical errors. If everything checks out,
breathe a sigh of relief: physics works!

1D+3D search strategy
Now we can start exploring whether it is possible to get search times which are smaller than τ3D
and τ1D. Modify the search algorithm in part b) in the following way: introduce a new parameter
γ, which represents the transition rate at which the protein dissociates from the DNA (when it is
at some point on the DNA that is not the target). We will not actually simulate the 3D di�usion
realistically, because this would be too computationally intensive for a problem set. But we an
include it in a semi-realistic way by de�ning something called a “3D jump” (more on that below).
The program in part b) should now simulate the following dynamics:

i→ i+ 1 with probability wδt
i→ i− 1 with probability wδt
3D jump with probability γδt
i→ i with probability 1− (2w + γ)δt

What happens when the program chooses to make a “3D jump”? Physically, the protein dissoci-
ates, wanders through the cell volume, and then randomly �nds another part of the DNA where it
can attach. From the point of view of our program, this means that every time a 3D jump occurs,
i is set to a random integer in the range from 1 to N . Of course it takes some time for this 3D
di�usion to occur. Though in reality this time may vary from jump to jump, as an approximation
we will assume there is a �xed duration τ3D jump for each 3D jump. This duration is related to τ3D,
the average time it takes for the protein to �nd the target site by 3D di�usion. Keep in mind that
the 3D jump is less speci�c: it can land on any of the N parts of the DNA. Since there are N
possible “targets” for the 3D jump, the search time should be N times smaller than the time for
a single target. Hence τ3D jump = τ3D/N = 0.008 s. In your program, every time a jump occurs,
add τ3D jump to the current value of t. You still have the regular loop that updates t in steps of δt
for all the other dynamical transitions, but the 3D jumps are the exception where the time step
becomes δt+ τ3D jump.

6



d) Let us call τ1D+3D(γ) the average search time to the target for a certain value of γ. You already
know the result for γ = 0, since this is just what you found numerically in part b), where the
protein can never detach to make a 3D jump. In other words, τ1D+3D(0) = τ1D. You also know
the result when γ →∞, because this just means the protein does not spend any time sliding on
the DNA (it instantaneously detaches if not at the target site), so τ1D+3D(∞) = τ3D. What about
intermediate values of γ? Use your new program to �nd τ1D+3D(γ) for γ = 1 s−1, 10 s−1, 100 s−1,
and 1000 s−1. You should see that τ1D+3D(γ) �rst decreases and then increases with γ, and the
minimum is smaller than either τ1D and τ3D. You have just numerically demonstrated facilitated
di�usion!

Note: The minimum value of τ1D+3D you �nd numerically is not quite the same as the exper-
imental value of 0.06 s quoted above. This re�ects the fact that we tailored the parameters to
make the computations faster, and the simpli�cations in our approach do not completely capture
the physics of facilitated di�usion in the cell. However the qualitative result that a speed-up can
occur with a mix of 1D and 3D di�usion is clearly evident.

Is there a clever analytical argument to justify the numerical results of the previous part?
Let’s break down the search process in the following way: the protein spends some time tslide
on average sliding along the DNA, and then dissociates and does a 3D jump, which lasts t3D jump.
Thus one slide+jump routine lasts tslide + t3D jump on average. Let’s say the probability of �nding
the target during one slide is ρ. Depending on how big or small ρ is, the protein must repeat the
slide+jump routine on average M times before �nding the target (the smaller the ρ, the larger
the M ). Putting everything together, the average search time should be:

τ1D+3D = M(tslide + t3D jump). (1)

The problem is we do not know what tslide, ρ, and M are. Let’s determine these one by one.

e) The average time spent sliding along the DNA, tslide, clearly must depend on the dissociation
rate γ (larger γ means shorter tslide). To �gure out tslide, let us introduce a simple two-state model
for the protein: it is either on the DNA, or o� the DNA (in this model we don’t care where exactly
the protein is located). We are only interested in the detachment process, so we have a single
probability rate γ for going from on to o�. Using the escape time formalism introduced in class,
what is the average escape time to get from on to o�. This is what we will call tslide, since it gives
us how long the protein stays attached to the DNA before it detaches.

f) The probability ρ is related to how many sites the protein visits on the DNA before detach-
ing. The larger the range of exploration, the higher the probability ρ that the target is in that
range. During one round of 1D di�usion on the DNA, the range of exploration over time tslide is
proportional to the root-mean-squared displacement (RMSD)

√
〈∆2

i 〉tslide of the protein from the
beginning of the 1D di�usion round. So the range of exploration must be c

√
〈∆2

i 〉tslide , where c is
some unknown constant of proportionality. Thus,

ρ ≈
c
√
〈∆2

i 〉tslide

N

or in other words ρ is approximately the fraction of sites explored during the interval tslide when

7



the protein is on the DNA. Using the theoretical prediction for the RMSD, and the result for tslide
from part e), write down an expression for ρ.

g) If the chance of success in each slide+jump is ρ, on average how many tries M does it take to
�nd the target? (This is a standard probability problem: for example, if you have a six-sided die,
on average how many times do you have to roll the die before you get a six?)

h) Plug the results of parts e), f), and g) into Eq. 1 for τ1D+3D. You now have an analytical expression
for τ1D+3D as it varies with γ. Find the γ at which this expression becomes minimum. This is the
optimal rate of detachment to get the best search time. Compare your analytical prediction to the
numerical results of part d). What is the rough value of the unknown constant c that makes the
analytical model agree with the numerical values?

If you have reached this point, congratulations! Had you done this exercise six years ago, you
could have gotten it published (see Ref. [4]).

3 Computational Hints
Several tricks are useful when designing the numerical programs in the problem set. The �rst is
how to choose between di�erent possible outcomes if you are given a list of probabilities. For
example, let us say there are three events that can happen (as in part a), where the probabilities
of those events are p1, p2, and p3, with p1 + p2 + p3 = 1. To choose a particular event, generate
a random number r between 0 and 1. If r ≤ p1, then event 1 happens. If p1 < r ≤ p1 + p2,
then event 2 happens. And if p1 + p2 < r ≤ p1 + p2 + p3 = 1, then event 3 happens. By using
this procedure, you guarantee that the events will occur with frequencies proportional to their
probabilities. For example if p2 is tiny, the range between p1 and p1 + p2 is tiny, so it is unlikely
for r to fall there, and hence event 2 happens infrequently. This approach can be generalized to
any number of possible events, so long as you know the probability of each event.

The second trick that comes in handy is to be able to choose a random integer between 1 and
N (for example when assigning a random value to the start position i0, or assigning a random i
after the 3D jump). To do this, generate a random number r between 0 and 1. Set i to be ceil(Nr),
where ceil(x) is the standard ceiling function, the smallest integer greater or equal to x.

8


