
BIOREPS Problem Set #4
Adaptation and cooperation

1 Background
Adaptation is one of the most distinctive features of our physical senses. The thermoreceptors in
our skin react sharply to the change in outside temperature when we jump into a cold pool on a
summer day, but rapidly adjust. Olfactory receptors in the nose can detect minute traces of chem-
icals in the air (a waft of perfume carried on a breeze), but will become insensitive to an odor after
persistent exposure (the classic case of someone wearing too much perfume or cologne). Pho-
toreceptors in the eye will adapt themselves to the overall intensity of light, giving us the ability
to distinguish visual features of our environment in both very bright and very dim conditions. In
a number of examples (certain photoreceptors, bacterial and eukaryotic chemotaxis), this adap-
tation approaches perfection: the sensing system essentially reacts only to changes in stimulus
(contrast in an image, gradients in concentration), and returns to the same baseline behavior ir-
respective of the absolute level of the stimulus. Strictly speaking, this “perfect adaptation” holds
only over some range of stimulus amplitudes, but that range could be many orders of magnitude
of ligand concentration or light intensity.

The evolutionary reasons for adaptation in sensing are easy to grasp when we consider the
alternative: imagine a detector that has evolved to amplify faint signals but has no capacity to
adapt. Such a detector will generally become completely saturated and hence useless if the envi-
ronment changes and the background level of the stimulus becomes very high (a photoreceptor
capable of detecting single photons in the darkness is suddenly exposed to sunlight). Adapta-
tion will solve this problem, by allowing the same sensor to operate (distinguish temporal and/or
spatial variations in the stimulus) under many di�erent background amplitudes.

E. coli chemotaxis, as we described in lecture, is perhaps the canonical example of perfect
adaptation. And though we know more about the molecular details of its sensing system than
any other case in biology, we still do not have a �nal, comprehensive picture of how it can achieve
perfect adaptation. The question has intrigued theorists for over forty years [1], and continues
to be an active research area. In this problem set, we will get a taste of why understanding E.
coli adaptation is highly non-trivial: it requires going beyond the level of individual receptors,
to �guring out how clusters of receptors interact with each other, coordinating their responses
to ligands in a cooperative manner. The bacterium has thousands of receptors grouped together
near its poles, and long-range interactions between these receptors could allow small groups (ten
or fewer) to synchronize their activity. Unfortunately the detailed chemistry of these interac-
tions has not entirely been worked out, but only indirectly inferred from experiments [2]. Our
approach will be mathematical: we will argue in general terms that a model of independent, un-
coordinated receptors is insu�cient to explain perfect adaptation. We will then work out a simple
alternative model involving an interacting cluster of receptors, and show that it can indeed ap-
proach perfection. This model of interaction has roots in a classic 1965 theory of Monod, Wyman,
and Changeux (MWC) for how protein function changes with ligand binding [3]. It represents
one extreme of cooperation: rather than each receptor switching between inactive and active
states independently, the entire cluster does so in unison, with either all active at the same time,
or all inactive at the same time. The MWC model has become a popular description of receptor
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clusters in E. coli, and this problem set draws on the arguments laid out by Howard Berg [2], Ned
Wingreen [4], and their collaborators. Because we do not yet understand the molecular basis of
the long-range interactions between receptors that could lead to perfect unison, the MWC model
remains for now a plausible hypothesis that can �t experimental data: it is not necessarily the
“true” picture, but it certainly suggests that receptor cooperation is a key ingredient to perfect
adaptation.
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2 Review of E. coli chemotaxis
Before we get to the details of the model, it is useful to brie�y review some of the properties
of E. coli chemotaxis we covered in class (the full derivations are in the online lecture notes).
Let us start with the top row of Fig. 1: the bacterium moves through a uniform background of
ligands, at some low concentration cL. It randomly alternates between running (mainly inactive
receptors) and tumbling (a su�cient number of active receptors), carrying out a random walk
through its environment. The running to tumbling ratio, or equivalently the ratio of inactive-
to-active stationary probabilities psI/psA, is dependent on the ligand concentration. For a single
receptor, we derived the general formula for this ratio at any concentration c,

psI
psA

=
r

s
= e−βε0F (c), (1)

where F (c) = (1 + c/KI)/(1 + c/KA). Here r is the transition rate from state A to I, s is the
the rate from I to A, KI is the ligand dissociation constant for the I state, and KA is the ligand
dissociation constant for the A state. The fact that the ligand is much less likely to bind to the A
state leads to KA � KI , which makes psI/psA much larger at high c than at low c. The variable ε0
is the energy di�erence between the inactive and active receptor in the absence of ligand, and it
plays a major role in the process of adaptation. The larger the ε0, the less likely we are to see the
inactive state, shifting the entire psI/psA curve to smaller values.

When the bacterium passes into a region of high concentration cH (bottom row of Fig. 1) we
initially get a much larger value of psI/psA. The inactive state becomes dominant, and we will
see a long run, generally lasting hundreds of seconds. However if it stays in the cH region for
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Figure 1: E. coli behavior before and after crossing a low-to-high concentration boundary.

an extended period of time, it makes sense for the bacterium to eventually return to its earlier
strategy of mixed running and tumbling. This way it can continue its random exploration (there
are perhaps even richer targets somewhere out there). The recovery occurs by a gradual increase
in the value of ε0, driven by methylation of the receptor. The psI/psA curve shifts down until its
value at cH is equal to the original curve’s value at cL. The bacterium has perfectly adapted, going
back to exactly the same ratio of running and tumbling it had at the beginning. Thus the E. coli
chemotaxis system has two key features: it can temporarily adjust itself to take advantage of sud-
den concentration changes (i.e the long run on passing from cL to cH ), but always returns to the
same base-line strategy in homogeneous ligand environments. Essentially all it cares about are
increases (or decreases) in ligand concentration, not the overall magnitude of the concentration.

3 Questions

3.1 Independent receptor model
We will start by looking at the behavior of a model where all receptors randomly switch between
I and A independently of each other, without any kind of coordination. At �xed ligand concen-
tration c, each receptor will then have a steady-state probability of being in the inactive state
psI , or active state psA, with a ratio given by Eq. (1). For simplicity of notation, let us de�ne the
“activity” a(c) ≡ psA as the probability of �nding a receptor in the active state. Using Eq. (1) and
the fact that psA + psI = 1, the activity is given by:

a(c) =
[
1 + e−βε0F (c)

]−1
. (2)

3



To model the e�ects of methylation, we assume the receptor can accomodate up to 8 methyl
groups, and so can be in a state m = 0, 1, . . . , 8, where m denotes the number of methylated
sites. We now make ε0 a function of m (linear for simplicity),

ε0(m) = µ+ σm (3)

where µ and σ are some constants. If σ > 0 then ε0(m) increases as m increases, which is the
observed behavior of the receptor. This makes a(c) also a function ofm, so we can rewrite Eq. (2)
as

a(m, c) =
[
1 + e−βε0(m)F (c)

]−1
. (4)

To complete the description of the model, we need to describe the dynamics of methylation. This
can be done by assigning transition rates between the m states, as shown below:

0 1 2 8

The rate of adding a methyl group to state m, and thus transitioning to state m + 1 is given
by:

gm = γ(1− a(m, c)). (5)

This represents the action of the chemotaxis enzyme CheR, which methylates the receptors, and
hence the rate constant γ is proportional to the concentration of CheR. The factor 1− a(m, c) is
due to the assumption that CheR can only methylate receptors in the inactive conformation, and
hence gm should be proportional to the probability 1− a(m, c) that the receptor is inactive.

Similarly the rate of removing a methyl group from state m, and thus transitioning to m− 1,
is given by:

rm = ρa(m, c). (6)

This represents the action of the chemotaxis enzyme CheB, which removes methyl groups from
the receptor. Since CheB can only perform its demethylation function if it binds to the receptor
and gets phosphorylated by the active receptor kinase domain, rm is proportional to a(m, c), the
probability that the receptor is in the active state.

Let pm(t) be the probability that a receptor is in state m at time t. Then the mean activity of
a receptor at time t, for ligand concentration c,

ā(c, t) ≡
8∑

m=0

a(m, c)pm(t) (7)

is the crucial physical variable of interest. This will be correspond to the mean activity of the
entire population of receptors, since in this model each receptor is independent. Hence ā(c, t)
will control the running vs. tumbling ratio (lower ā means more running).

We can now pose the question of perfect adaptation in a mathematically rigorous way: imag-
ine that at time t = 0 the bacterium enters a region of concentration c. Its receptors have some
methylation probability distribution pm(0), and hence mean activity ā(c, 0). Assuming it stays in
the same concentration region for an arbitrarily long time, the probability pm(t)→ psm as t→∞,
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a steady state solution, and hence ā(c, t)→ ās(c) =
∑8

m=0 a(m, c)psm. The long-time limit is the
baseline behavior towards which the system tends. If ās(c) is a constant independent of c, then
we have perfect adaptation. If ās(c) varies depending on c, then we have imperfect adaptation.
Let us now see which one occurs in the independent receptor model.

a) Write down an expression for the current Jm+1,m(t) from state m to m + 1. The stationary
solution psm corresponds to the case where all currents Jsm+1,m in the system are equal to zero.
Use this fact to write down a recursion relation, psm+1 = νmp

s
m. Find the factor νm.

b) Each current being zero in the stationary state also means that
∑7

m=0 J
s
m+1,m = 0. Show that

this implies the following equation for ās(c):

ās(c) =
γ

γ + ρ
+ ps0

a(0, c)ρ

γ + ρ
+ ps8

γ(a(8, c)− 1)

γ + ρ
(8)

This is a potentially interesting result: if both ps0 and ps8 were zero, then ās(c) would be indepen-
dent of c, leading to perfect adaptation. Is this what actually occurs? We will �nd out in the next
part.

c) Write a program that numerically solves the recursion relation from part a) for a given set of
parameters. Your program should initially set ps0 to an arbitrary guess (like ps0 = 0.1) and then
solve for ps1, ps2, through ps8. To ensure normalization, at the end of the procedure all the psm values
should be divided by the sum Z =

∑8
m=0 p

s
m. Use the following set of parameters:

KI = 20 µM, KA = 500 µM, γ = 0.1 s−1, ρ = 0.2 s−1, µ = −1 kBT, σ = 0.5 kBT

Plot the distributions psm, m = 1, . . . , 8, for the following values of concentration c, which covers
the range of ligand environments the bacterium is likely to encounter: c = 0.1, 1, 10, 100, and
1000 µM. Note the general trend of the distribution, with its peak shifting to higher m values
as c increases. However also note that given the limited set of possible m states, the scenario
p0s = p8s ≈ 0 does not occur. (There is always a non-negligible probability that either all the
receptor sites are methylated, or all are empty.) Use Eq. (8) to calculate ās(c), and plot it versus
log10 c for the values of c listed above. How much larger is ās(0.1µM) compared to ās(1000µM)?
Clearly the independent receptor model does not achieve perfect adaptation.

3.2 Interacting receptor model
Let us now consider a model where N receptors form a cluster, and the methylation state of the
jth receptor is labeled mj . The stationary inactive-to-active probability ratio for the jth receptor
is psIj/psAj = e−βε0(mj)F (c). The key assumption of this interacting model (inspired by the MWC
theory discussed above) is that receptors have long-range interactions that perfectly synchro-
nize their activity: all the receptors in the cluster are either simultaneously active (stationary
probability psA), or simultaneously inactive (stationary probability psI ). The ratio of the cluster
probabilities is just the product of the ratios for the individual receptors:

psI
psA

=
N∏
j=1

psIj
psAj

= e−β(Nµ+σm)FN(c), (9)
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wherem =
∑N

j=1mj is the total methylation state of the cluster. Using the fact that psI +psA = 1,
the activity function for the entire cluster, a(m, c) ≡ psA, is given by:

a(m, c) =
[
1 + e−β(Nµ+σm)FN(c)

]−1
. (10)

Everything else in the model description from the previous section stays the same, except that m
now runs between 0 and 8N , since that is the maximum total methylation state of the cluster.

d) Redo the numerical calculation of part c) for N = 4. Remember that you must change the
νm factor in the recursion relation to re�ect the new de�nition of a(m, c) in Eq. (10), and carry
out the recursion up until m = 8N , normalizing the probabilities psm afterwards. Eq. (8) remains
valid, but with 8 replaced by 8N . If everything works correctly, you should see that the system
is now much closer to perfect adaptation across the range c = 0.1 µM to 1000 µM.

Why does the interacting receptor model work so much better? Numerically, you should have
noticed that ps0 and ps8N are much closer to zero across the investigated c range, and hence Eq. (8)
predicts that ās(c) is approximately a constant independent of c. The synchronized receptor
cluster is in some ways like a giant receptor, with a much broader range of possible methylation
states. It becomes statistically much less likely that you can completely demethylate every recep-
tor in the cluster (state m = 0 occupied) or completely methylate every receptor (state m = 8N
occupied). To put this on a more rigorous footing, let us mathematically check if ps0 → 0 and
ps8N → 0 as N → ∞ for arbitrary parameters. You can assume that µ < 0, σ > 0, µ + 8σ > 0,
and that KI < KA. (Note by de�nition KI , KA are positive, being dissociation constants, and γ
and ρ are positive, being rates.)

e) Let us �rst start with ps0. From the recursion relation we know that ps0 = ps1/ν0. Prove that
ν0 →∞ as N →∞. Since 0 ≤ ps1 ≤ 1, this means that ps0 must go to zero as N →∞.

f) Now consider ps8N . We know that ps8N = ν8N−1p
s
8N−1. Show that ν8N−1 → 0 as N →∞ only

if c < c∗, where c∗ is a certain threshold concentration. Find c∗. Thus if c < c∗, then ps8N → 0 as
N →∞, since 0 ≤ ps8N−1 ≤ 1.

g) The result of part f), together with part e), implies that the interacting receptor model will
approach perfect adaptation asN →∞, but only for concentrations less than c∗. Even perfection
has its limits! To see this numerically, �nd the value of c∗, and using your code from part d) to
calculate ās(c) for a concentration c� c∗. You should �nd that it is noticeably di�erent than the
value at c� c∗. So while perfect adaptation holds over many orders of magnitude of c, it cannot
hold for an arbitrarily large concentration. This is in agreement with our physical intuition:
biological sensors cannot adapt to absolutely all levels of stimulation. (This one of the reasons it
is not wise to stare at the sun.)
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