
BIOREPS Problem Set #5
A tale of two scallops

Peer Fischer and his collaborators recently designed tiny scallop-like devices that can swim
through non-Newtonian �uids, like those found inside the eye and in many other anatomical
contexts [Nature Comm. 5, 5119 (2014)]. These micro-scallops (with shells of size ∼ 300 µm)
perform a periodic, reciprocal swimming stroke, which is the only kind possible when there
is a single variable that controls body shape: the angle α(t) between the shells. By Purcell’s
scallop theorem, such a simple stroke could not lead to net displacement in a Newtonian �uid,
but everything changes in a non-Newtonian �uid, where the viscosity η of the medium is no
longer a constant independent of the swimming motion.

But what about Newtonian micro-scallops? Are they forever doomed to oscillate in place?
Happily, even in Newtonian �uids, there is an interesting caveat to the Purcell theorem: it breaks
down in the presence of a second micro-scallop, located not too far away from the �rst. By them-
selves they would get nowhere, but together they can very, very slowly drift in one direction. This
scallopy action at a distance is due to long-range �ow �elds induced in the �uid by the reciprocal
swimming strokes. The goal of this problem set is to show why there is no “Purcell many-scallop
theorem”, following an argument introduced by Eric Lauga and Denis Bartolo [Phys. Rev. E
78, 030901R (2008)]. Hydrodynamic interactions can thus provide a way for micro-swimmers to
achieve collective motion.

Part I: a micro-scallop spherical cow model

physics! 1 2

The �uid dynamics of real micro-scallops is non-trivial to model, so we will adopt an alter-
native system that is mathematically tractable, and is qualitatively very similar: two spheres of
radiusR connected by a thin, motorized linker. The motor inside the linker can exert forces on the
spheres, f1(t) and f2(t), and thereby decrease or increase the distance a(t) = x2(t)− x1(t) > 0
between the sphere centers. By Newton’s third law, f2(t) = −f1(t), so there is really only one
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force function in the problem, which we will call fa(t) ≡ f1(t) = −f2(t). The variable a(t) plays
the same role as the scallop angle α(t): it determines the “body shape”. Specifying the periodic
functional form for a(t) de�nes the stroke of the swimmer. From the Stokes drag law, we know
that applying a force fi(t) to sphere i will lead to a velocity ẋi(t) = fi(t)/(6πηR) ≡ µfi(t),
where η is the viscosity of the surrounding �uid. The constant µ = 1/(6πηR) (generally called
the mobility) is the inverse of the friction coe�cient. Only the spheres are assumed to have drag:
we will take the linker to be extremely thin, and thus it will not appear in the equations of motion,
except indirectly through the fact that its motor applies the force fa(t) necessary to produce a
certain pre-determined periodic cycle a(t).

There is one aspect of motion through a �uid that we have not considered so far: the phe-
nomenon of long-range hydrodynamic interactions. For simplicity, we have ignored these in our
lecture discussions, but they will play a major role here. The physical basis of these interactions
is simple: if you apply a force on an object, you will impart some velocity to that object, according
to the Stokes drag law. But you will also create a �uid �ow �eld in the vicinity, and if another
object is present nearby, it will start to move as a result. Because this interaction is mediated by
the �ow �eld, and the velocity of the �uid decays with distance, this indirect speed transfer to a
nearby object will be smaller than if you directly applied the force to that object. But to capture
the full physics of the system, you cannot ignore it. In this exam, we will only consider systems
of spheres moving along a single coordinate axis x̂ (for example the two-sphere micro-swimmer
above). For a system ofN spheres, the velocity of the ith sphere in the presence of hydrodynamic
interactions is

ẋi(t) =
N∑
j=1

Hijfj(t) where Hij =

{
µ i = j

ν
|xj(t)−xi(t)| i 6= j

(1)

where the form of the matrix H is valid assuming the distances |xj(t) − xi(t)| between spheres
are always much larger than the sphere radius R (which will always hold in our case). Here
fi(t) is the internal force on the ith sphere (applied by a motor, for example), and the constant
ν = 1/(4πη). The diagonal elements of the matrixH areHii = µ, and just re�ect Stokes drag law
as described above. The o�-diagonal elements are the new part: the contribution to the velocity
of sphere i due to the �ow �elds created by forces acting on spheres j 6= i. The distance in the
denominator re�ects the fact that these �ow �elds decay as you go away from the point of force
application.

An immediate question arises: for a single micro-swimmer at low Reynolds number in a
Newtonian �uid, does Purcell’s theorem still apply when we include hydrodynamic interactions
between the parts of the swimmer? As it turns out, the answer is yes, because Eq. (1) preserves
the linear relationship between forces and velocities that was at the core of the theorem’s proof.
However, it is instructive to test this explicitly for the case of our two-sphere micro-swimmer.

a) Using Eq. (1), write down equations for ẋ1(t) and ẋ2(t). Rewrite everything in terms of the
variables xa(t) ≡ (x1(t) +x2(t))/2 and a(t) = x2(t)−x1(t), which represent the center-of-mass
position of the micro-swimmer and its length. Derive equations for ẋa(t) and fa(t) that depend
only on a(t), ȧ(t), or constants. In particular, you should �nd that:

ẋa(t) = 0, fa(t) =
a(t)ȧ(t)

2(ν − µa(t))
(2)
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As you can see, the zero center-of-mass velocity ẋa(t) means that the scallop goes nowhere,
regardless of the stroke function a(t). Purcell’s theorem is safe (for now).

Part II: a micro-scallop pas de deux

1 2 3 4

Now consider another micro-scallop in the picture: two spheres of radiusR at positions x3(t)
and x4(t), with body variable b(t) = x4(t) − x3(t). The separation from the �rst scallop is
d(t) = x3(t) − x2(t). Given a set of periodic stroke functions a(t) and b(t), can each micro-
scallop exploit the �uid velocity �eld induced by the other in order to achieve net motion?

b) Using Eq. (1), write down equations of motion for ẋi(t), i = 1, . . . , 4. Assume d(t) is much
larger than all the other distances in the problem, and simplify expressions involving d(t) in your
equations by Taylor expanding for small 1/d(t), keeping terms up to and including order 1/d2(t).

c) Just like in part a), switch to swimmer center-of-mass variables xa(t) = (x1(t) + x2(t))/2 and
xb(t) = (x3(t) + x4(t))/2, and length variables a(t) and b(t). Derive equations for ẋa(t), fa(t),
ẋb(t), and fb(t). You should �nd that fa(t) is the same as in Eq. (2), but ẋa(t) is no longer zero.
The center-of-mass velocities should have the form:

ẋa(t) =
νb2(t)ḃ(t)

2d2(t)(ν − µb(t))
, ẋb(t) = − νa2(t)ȧ(t)

2d2(t)(ν − µa(t))
(3)

where d(t) in the center-of-mass/length variables is: d(t) = xb(t)− xa(t)− a(t)/2− b(t)/2.

d) Use the results of Eq. (3) to derive an equation for ḋ(t), and show that to leading order in
the limit of large d(t) this equation has the form ḋ(t) ≈ −ȧ(t)/2 − ḃ(t)/2. The corresponding
solution is:

d(t) = d(0)− a(t)− a(0)

2
− b(t)− b(0)

2
(4)

e) By plugging Eq. (4) into Eq. (3), we now have expressions for ẋa(t) and ẋb(t) which depend
solely on a(t), ȧ(t), b(t), ḃ(t), and constants. Let us check whether we can get net motion. The
simplest case is when the scallop stroke functions are identical, b(t) = a(t), so they do their
motions perfectly in phase. The function a(t) is periodic with period τ , so a(0) = a(τ). Argue
that in this case ∆xa ≡ xa(τ)−xa(0) = 0, ∆xb ≡ xb(τ)−xb(0) = 0, so there is no displacement
at the end of one period. We have thus ruled out all hope for a micro-scallop synchronized swim
team. Hint: Integrate both sides of the ẋa(t) and ẋb(t) expressions from t = 0 to τ , and change
integration variables from t to a in the integrals on the right-hand side.
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f) What about out-of-phase swimming? Assume the scallop stroke functions are sinusoidal,

a(t) = L+ A sin

(
2πt

τ

)
, b(t) = L+ A sin

(
2πt

τ
+ φ

)
for constants L = 1 µm, A = 0.5 µm, φ = π/2 and period τ = 1 ms. Each sphere has radius
R = 0.1 µm, the viscosity of water is η = 0.89 pN/µm2 ·ms, and the initial separation is d(0) = 3
µm. Numerically integrate Eq. (3) (with the substitution of Eq. (4)) from t = 0 to t = τ to �nd
the net displacements ∆xa and ∆xb. What are the mean velocities ∆xa/τ and ∆xa/τ of each
scallop, and how do they compare to a typical swimming speed, i.e. 30 µm/s for E. coli? As you can
see, the speeds of micro-scallop pairs are not exactly breathtaking. But at least they are getting
somewhere! Hint: The quickest numerical integration scheme is just to sum the right-hand side
of Eq. (3) from t = 0 to 1 ms in steps of dt = 0.001 ms, and then multiply the total by dt.

g) As one might imagine, this method of propulsion is not necessarily the most fuel-e�cient.
The power expended by the motor of the �rst micro-scallop is Pa(t) = ẋ1(t)f1(t) + ẋ2(t)f2(t) =
−ȧ(t)fa(t), and similarly for the second micro-scallop Pb(t) = −ḃ(t)fb(t). For the parameters
above, calculate the total energy used per period, in units of kBT :

E

kBT
=

1

kBT

∫ τ

0

dt (Pa(t) + Pb(t))

where kB = 1.3 × 10−23 J/K and T = 298 K. To get a sense of how e�cient or ine�cient this
energy expenditure is, we can make a baseline comparison: using the Stokes drag law, calculate
the external force fext required to keep an isolated sphere of radius R = 0.1 µm moving at the
same mean speed as you found in part f). Now calculate how much energy would be expended
by this external driving over a duration of 1 ms, and multiply this number by 4 since we have 4
spheres in our system. Let us denote this total value, in units of kBT , asE0/kBT . How doE/kBT
and E0/kBT compare? Clearly the indirect mechanism of propulsion through hydrodynamic
interactions is very ine�cient, since it requires much more energy to maintain the same average
speed versus direct application of an external driving force. Where is the extra energy going?
The vast majority is being expended through drag friction during the oscillatory motion of the
scallop spheres. With each period, the center-of-mass has moved a tiny amount ∆xa, but the
motor has moved the spheres back-and-forth across an amplitude A � ∆xa to achieve this
slight displacement.
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