
BIOREPS Problem Set #6
Cost and Precision of Brownian Clocks

1 Background
In a previous problem set, we saw how energetically expensive it was to correct protein misfold-
ing. We could imagine that there is some degree of tolerance associated with the �nal form of
the protein; in other words, the �nal protein structure may not have every disul�de bond, alpha
helix, and beta pleated sheet constructed with unlimited precision. We saw that there was a �nite
energy cost for the precise construction of populations of functional proteins. This relationship
between energy cost and precision is much more ubiquitous to biological processes.

In this problem set, instead of investigating the energy cost of making proteins, we will inves-
tigate the energy cost (and precision) of operating proteins, in particular, as biological Brownian
clocks. Biological clocks are di�erent from everyday clocks in that the intervals between ’ticks’
varies randomly - this randomness or stochasticity is Brownian which means that the variation
in ticks falls o� as 1/f 2. Warning: the usage of the word ‘clock’ here is wrought with peril since
the everyday use of the word intuitively implies a high degree of precision - perhaps pacemaker
or stochastic pump is more apt - but ‘clock’ is still appropriate in some sense because, similar to
wristwatches, biological clocks signal and coordinate the timing of events like the daily release
of hormones or the coupling between the heart and breathing.

Brownian clocks underlie almost all biological rhythms, many of them crucial to biological
function (autonomic rhythms governing breathing, eating, etc.) and behavior (oscillations in the
nervous system). Populations of Brownian clocks build pacemaker systems that cover at least
15 orders of magnitude (nanoseconds to days). For instance, pacemaker circuits range from the
circuits controlling heart rate to the famed superchiasmatic nucleus governing circadian rhythms
[1]. Because they are so ubiquitous and numerous, energy cost and precision are fundamental
to the nature, design, and understanding of these systems. The operation of Brownian clocks
can ultimately be reduced to the protein conformation/phosphorylation cycles. These protein
cycles are fueled by ATP and operate with �nite precision. One example is the phosphorylation-
dephosphorylation cycle of the KaiC protein which governs the circadian rhythm of cyanobacte-
ria.

The energy cost of protein phosphorylation cycles is inextricably tied with their timing pre-
cision. Intuitively, higher precision costs more energy and in�nite precision requires in�nite
energy. What if that wasn’t the case? As we’ll see in the following problem set, unlike every-
day clocks, Brownian clocks can achieve arbitrary precision at vanishingly low costs. This is an
extremely unintuitive conclusion but could o�er profound insight into the role of indeterminacy
in physical systems and the (elected?) messiness of biological systems. First we will develop
models for two classes of clocks: (1) a clock driven by a constant thermodynamic potential and
(2) a Brownian clock, conceptually consistent with the description above. We will evaluate some
of the properties of these two clocks, especially the relationship between clocking precision and
energetic cost. Second, we will develop some of the theoretical framework on which this conclu-
sion rests, in particular, the central proof that it is always possible to build what is known as a
steady state bipartite Markov process for a Brownian clock [2].
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Figure 1: Illustration of a Brownian clock with four states. The clock "hand", while in state 1,
can either move to state 2 with rate k+1 , or to state 4 with rate k−1 , etc. Figure credit: Ref. [2].

2 Questions

2.1 What is a Brownian Clock?
In a Brownian clock (Figure 1), we cannot measure the time directly by the clockwise (CW) cycle-
completion time as we do a traditional clock. This is well-de�ned only when k−n = 0, which
macroscopically corresponds to the fact that the second hand on an analog clock never ticks
counter-clockwise (CCW). Instead, we must consider the probability current J of the system,
which is de�ned as the average of the �uctuating current in the system divided by the total
running time of the clock: J ≡ 〈X〉/T . The inverse of the probability current (J−1) is the
average time for the clock to complete one cycle. Associated with this probability current is an
uncertainty that we will de�ne as the following:

ε2 ≡ 〈X
2〉 − 〈X〉2

〈X〉2
=

2D

J2T
(1)

a) Why is ε2 an appropriate measure of the relative uncertainty in this system?

b) The di�usion coe�cient has been de�ned as D ≡ 〈X2〉−〈X〉2
2T . What is the di�erence between

the de�nition of D here compared to the way it is usually de�ned?

c) If it costs us an amount A of free energy (i.e. chemical potential µ) to traverse the loop once,
what would be a good measure of the average energetic cost to run this Brownian clock for a
total time T ? De�ne this quantity as C.

2.2 Brownian Clock Driven by a Fixed Thermodynamic Force
a) Referring to Figure 1, we will �x all the forward (CW) transition rates to k+ and backward
(CCW) transition rates to k−. Write down the probability current, J , for this clock. Hint: You can
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think of this as a random walk with step size 1/N so that the probability of being in any given
state is uniform (Pi = 1/N for i = 1, ..., N ).

b) The di�usion coe�cient in this case is given by (k+ + k−)/(2N
2). Rationalize this from your

knowledge of means, variance, and the speci�c functional form of J in Eq. (1).

c) Show that Cε2 = 2DA/J .

d) Show that A/N = ln

(
k+
k−

)
.

e) Use the results from parts c) and d) as well as the identity coth(x) = (e2x + 1)/(e2x − 1) to
show:

Cε2 = A
N

coth

(
A
2N

)
(2)

f) The above result thus implies Cε2 ≥ max(2,A/N). Hint: Expand e) to �rst order about small
A and compare this to A/N with the knowledge that | coth(x)| > 1. To what regime in A does
this correspond?

g) We can further explore the physical manifestation of this uncertainty relation by considering
the following examples to better understand the design, precision, and energetic cost of such a
Brownian clock. If the system is far from equilibrium, your answer from f) implies a minimum
number of states needed to ensure an uncertainty of no more than ε. Find Nmin as a function of ε
and X . We wish to keep our value of ε ≤ 0.1. Explicitly calculate Nmin for 〈X〉 = 1, 10, and 100.

h) Say we wish to measure a time of one hour to a certain precision ε = 10−2 with either a "slow"
clock that ticks once every minute (〈Xslow〉 = 60) or a "fast" clock that ticks once every second
(〈Xfast〉 = 3600), where one tick corresponds to one complete cycle of the given system. Find
the analytical expression for the a�nityAmin required to drive a given N-state clock with a �xed
Cε2? Calculate this explicitly for both the "fast" and "slow" clocks.

The above examples of the "fast" and "slow" clocks may have di�erentAmin, but their energetic
cost is actually very close to the same; they are both bounded by∼ 20000! What does this mean?
Our "fast" clock is not necessarily any more precise or energetically favorable than our "slow"
clock, given that each cycle has a su�cient number of steps, as shown in g). This universal
bound of Cε2 ≥ 2 insures that higher precision requires a higher cost in energy. A physical
example of such a cost is found in ATP hydrolysis, which yields approximately 20kBT . To obtain
an uncertainty ε, a consumption of 1/(10ε2) is required. We will contrast this with a clock driven
by an external protocol, which does not share this same relation with energy consumption and
precision.

2.3 Periodic Forcing
Another class of Brownian clocks are those driven by external protocols (Figure 2). These exter-
nal protocols are not the result of fuel spending in the clock as with the thermodynamic clock,
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Figure 2: Illustration of a Brownian clock with a stochastic periodic protocol. The states are
labeled by i = 1, 2, .... The variable αi undergoes a backwards jump, αi → αi − 1, with rate
γ = N

τ
. This corresponds to a jump in energies Eαi → Eαi−1, and likewise for the rates, k+αi and

k−αi+1
and barriers, Bαi(t). Half of the network and the barriers, , are not included for simplicity.

The pointer indicates the clock is in position j = 1 and remains there for the duration of a jump
in the αi since a transition changing in both variables αi and the position of the clock j is not
allowed by de�nition of a bipartite Markov process. Figure credit: Ref. [2].

but rather the result of di�usion according to the orientation of the site energies and energy bar-
riers of the regime. This orientation changes counterclockwise with period τ and rate γ = N

τ
,

resulting in an e�ective clockwise shift in the transition rates from i to i+1. To determine these
transition rates, we again consider a ring with equidistant sites and N states. With site i having
energy Ei(t) and the energy barrier between i and i+ 1 being Bi(t), we de�ne

εi ≡ eEi(t) χi(t) ≡ e−Bi(t) (3)

Then the transition rates are given as

ki,i+1(t) = χi(t)εi(t) ki,i−1(t) = χi−1εi(t). (4)

You should notice that this is just a clean way of writing some very familiar equations!

The calculation of useful quantities for externally driven clocks is, in general, extremely dif-
�cult when not impossible. Here we’ll lay out the process of calculating D, J , and σ, but only
calculate them for a couple special cases. Together, the clock and the external protocol driving it
form a bipartite Markov process. There are two sets of indices which will only jump to the other
set, making it bipartite, and they do so in a manner satisfying the conditions of a Markov process.
The matrix describing this process has the following form:

(Ln)i+1,i = χi−nεi−n

(Ln)i,i = −(χi−n + χi−1−n)εi−n.

(Ln)i−1,i = χi−1−nεi−n
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Note that jumps from one state to another can only happen between adjacent states, meaning
all other elements of the matrix must be zero. It is useful here to relabel by transition rate, instead
of position on the ring. We will de�ne the index α = 1 to be the index of the state with transition
rate εiχi to jump to state α = 2 and the transition rate εiχN to jump to α = N . The rate of the
change in the protocol is γ. Then the above matrix in conjunction with the modi�ed generator
associated with current X then gives the matrix:

L∗(z)α+1,α = χαεαe
z/N

L∗(z)α,α = −(χα + χα−1)εα − γ.
L∗(z)α−1,α = χα−1εαe

−z/N + γ

By calculating the coe�cients Cm(z) according to

N∑
m=0

Cm(z)x
m ≡ det[xI− L*(z)]

we can calculate J and D according to

J = −C ′o/C1

D = −(C ′′0 + 2C ′1J + 2C1J
2)/2C1,

where the prime indicates a derivative in z and the coe�cients are evaluated at z = 0. From this,
the entropy is calculated by

σ =
∑
n

P n

[∑
i<j

JnijdijA
n + γn

∑
i

P (i|n)(En+1
i − En

i )

]
where P n denotes the probability of the external protocol being in state n, Jnij = P (i|n)knij −
P (j|n)knji is the probability current, and En

i is the free energy of of the state i with the external
protocol in state n. It’s not hard to imagine that an actual calculation of any of these quantities
would be exceptionally di�cult except in special cases. We’ll look at two such special cases now.
When Cε2 is optimized, χN = 0, χ1 = χ2 = · · · = χN−1 = χ, and χ >> γ.

a) What does χN = 0 tell you about the system? What about χ >> γ?

The equilibrium distribution of this system is given by

P ?
α = e−Eα/Z

where Z is the partition function. If we de�ne keff+ ≡ γ
∑N

α=2 P
?
α and keff− ≡ γP ?

1 , the master
equation can be written as

d

dt
P (X, t) = keff+ P (x− 1/N, t) + keff− P (X + 1− 1/N, t)− (keff− + keff+ )P (X, t).

This master equation is not very fun to solve in X space, but, as is the case with most ODEs,
we can project our very hard problem onto a space where it becomes trivial. De�ne the Laplace
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transform as P̃ (z, t) ≡
∑

X≥0 e
zXP (X, t). P̃ (z, t) is also known as a moment generating function

of P (X, t). To see why this is, take the �rst couple derivatives of P̃ (z, t) with respect to z and
evaluate them at z = 0.

Multiplying both sides of the master equation by ezX and summing over X yields

d

dt
P̃ (z, t) =

[
keff+ ez/N + keff− e−(N−1)z/N − (keff+ + keff− )

]
P̃ (z, t) (5)

b) From the de�nition of P̃ (z, t) above, show that the natural boundary condition for Eq. (5)
is P̃ (0, t) = 1. Solve (5), writing your answer in the form P̃ (z, t) = eψ(z)t, for some ψ(z).
Show that J = d

dz
ψ(z)|z=0 is consistent with the J given in the paper for this case: J =

γZ−1N−1[
∑N

α=2 e
−Eα − (N − 1)e−E1 ].

c) Show that 2D = d2

dz2
ψ(z)|z=0 is consistent with the D given in the paper for this case, D =

1
2
γZ−1N−2[

∑N
α=2 e

−Eα + (N − 1)2e−E1 ].

d) Show that σ for this system with the above equation matches the σ given in the paper for
this system, σ = γZ−1[

∑N
α=1 e

−Eα(Eα−1 − Eα)]. Note that only the second term in the general
expression for σ needs to be calculated here.

Now we’ll shift our focus to another special case which is simple to solve, and elucidates one
of the main results of the paper. Consider a Dissipation-less clock with Eα = Eδα,1 where δα,1 is
the Kronecker delta.

e) Using the equations you veri�ed in b), c), and d) above, use the relation Cε2 = 2Dσ/J2 to
calculate Cε2 for this system. You should �nd that

Cε2 = [1 + e−E(N − 1)]E

(N − 1)(1− e−E)
. (6)

f) Consider what you would expect from the value of Cε2 if we chose E and N in such a way
that eE >> N >> E. Show that, under these conditions, Cε2 ∼ E/N . What does this say about
the clock’s uncertainty? What does it say about how much energy the system dissipates? This is
touted as the "main result" of the paper!

The asymptotic analysis you performed in the previous question illuminates the fundamental
di�erence between a Brownian clock driven with a constant force and one that is pumped peri-
odically, but what can we say about the optimal Cε2 for any given N? One cannot analytically
minimize Eq. (6), so we’ll have to do some numerical analysis. Note that for the following ques-
tions, the Mathematica functions NMinimize, List(LogLinear)Plot, NonlinearModelFit, and
Series might be useful. You can read all about them and play around with interactive examples
in the MM documentation.

g) For N = 3 to N = 1000, numerically minimize (6) with respect to E and plot the ‘optimal
energy pro�le’ vs. N (make one regular plot and one log-linear plot).
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h) From your second plot, argue that Eopt(N) can be �t to the form Eopt(N) = a + b ln(N) for
some constants a and b. Do the �tting and show that Eopt(N) ≈ 3

5
(1 + 2 ln(N)).

i) We can now plug Eopt(N) into (6) to get Cε2opt, but the answer is kind of messy. Expand around
large N to �rst order to show that in this case Cε2opt ∼ Eopt/N , as we know it must.

This main result is only achievable through the theoretical framework that describes systems
driven by a stochastically-varying protocol: the bipartite Markov process. No parts of this process
con�ict with thermodynamics. Indeed, we could include the (well-de�ned) entropy generated by:
1) a stochastic protocol with allowed backward jumps, 2) the changes of the protocol, and 3) the
generation of the stochastic protocol itself. Barato and Seifert note that for a physically realizable
system with a truly external process, the entropy of such protocols–stochastic or deterministic–is
irrelevant (e.g. night/day changes). Experiments have yet to be performed to realize the results
obtained in this problem set, but possible candidates for a Brownian clock could include single
molecules, colloidal particles, and small electronic systems [2].
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