### Red ball in vibrating box

See Lecture 3 diffusion experiment movie on course website.

 $D = 0.2 \text{ cm}^2$ /s. Red ball diffuses L = 23 cm along *x*-axis in roughly  $L^2/2D = 1323 \text{ s.}$ 

Water molecule [0.3 nm diameter] surrounded by water



### Water molecule inside cell nucleus



### Protein [2 nm diameter] surrounded by water



### Protein inside cell



## Protein bound to membrane



### Protein sliding along DNA





Typical time to diffuse across:

1  $\mu$ m bacterium: 0.05 s



#### Typical time to diffuse across:

- 1  $\mu$ m bacterium: 0.05 s
- 10  $\mu$ m human cell: 5 s



#### Typical time to diffuse across:

1  $\mu$ m bacterium:0.05 s10  $\mu$ m human cell:5 s3 m giraffe neck neuron:14,000 yrs !!



### Typical time to diffuse across:

1  $\mu$ m bacterium:0.05 s10  $\mu$ m human cell:5 s3 m giraffe neck neuron:14,000 yrs !!



Giraffes do not exist.

# Life at larger scales is an exception rather than the rule

While the mechanisms of how large-scale life operates are fascinating, keep in mind they are a sideshow to the primarily unicellular, small-scale nature of life on earth:

#### numbers of cells on Earth:

| prokaryotes            | $5 	imes 10^{30}$   |
|------------------------|---------------------|
| plants                 | $2.4 	imes 10^{28}$ |
| unicellular eukaryotes | $2.3 	imes 10^{26}$ |
| animals                | $1.3 	imes 10^{26}$ |

Landenmark et al., PLoS Biol. (2015)