cell membrane:

\[\Delta V = V_{in} - V_{out} \]

at \(\Delta V = V_o \approx -65 \text{ mV} \)

all ion currents = 0

(resting potential)

\[\Rightarrow 54 \text{ mV} \]

\[\dot{J}_Na = g_{Na} (V_o - V_{N}^{Na}) + \dot{J}_{Na}^{pump} = 0 \quad (1) \]

\[\dot{J}_K = g_K (V_o - V_{N}^{K}) + \dot{J}_{K}^{pump} = 0 \quad (2) \]

\[\Rightarrow -75 \text{ mV} \]

we know b/c of the nature of the pump that:

\[\dot{J}_{K}^{pump} = -\frac{2}{3} \dot{J}_{Na}^{pump} \quad (3) \]

take (1), (2), (3) + solve for \(V_o \).
\[g_k (V_o - V_{N}^k) = - \int_{K}^{\text{pump}} \]
\[= \frac{2}{3} j_{Na}^{\text{pump}} = - \frac{2}{3} g_{Na} (V_o - V_{Na}^N) \]

\[\Rightarrow V_o = \frac{2 g_{Na} V_{Na}^N + 3 g_k V_{N}^k}{2 g_{Na} + 3 g_k} \]

In normal resting state, most Na channels are closed:

\[g_k \gg g_{Na} : \quad g_k = 25 g_{Na} \quad \text{for squid} \]

\[\Rightarrow V_o \text{ should be close to } V_{N}^k \]

In fact \(V_o = -65 \text{ mV} \) which is close to \(V_{N}^k = -75 \text{ mV} \)

What happens when \(\Delta V \neq V_o \)?

\[\Delta V = V_o + u \quad \text{where } u \neq 0 \]
\[
\dot{J}_{\text{tot}} = \dot{J}_K + \dot{J}_{\text{Na}} = g_K (u + V_o - V_N^K) + j_{\text{pump}}^K + g_{\text{Na}} (u + V_o - V_N^{\text{Na}}) + j_{\text{pump}}^\text{Na} = (g_K + g_{\text{Na}}) u + g_{\text{tot}} (\Delta V - V_o)
\]

- If \(\Delta V < V_o \)
 - \(\dot{J}_{\text{tot}} < 0 \)
 - \(\Delta V \) becomes more positive
 - \(\Delta V \rightarrow V_o \) from below

- If \(\Delta V > V_o \)
 - \(\dot{J}_{\text{tot}} > 0 \)
 - \(\Delta V \) becomes more negative
 - \(\Delta V \rightarrow V_o \) from above
 - Eventually return to resting state

What if Na channels all opened?

\[g_{\text{Na}} \rightarrow \tilde{g}_{\text{Na}} \gg g_K \]

\[V_o \rightarrow \tilde{V}_o = 40 \text{ mV} \] close to \(V_N^{\text{Na}} \)
Turns out g_{Na} is actually a function of ΔV:

Concrete example:
neurons after death

ρI

K^+ ions

$\rho \sim 0.5 \text{ mm} \quad \text{squid}$

rat
start hear V_0 +
then current modifies ΔV:

$$\dot{V}_{\text{tot}} = g_{\text{tot}} (V_0 - V_N^k) + \text{no pumping}$$

starting point $-65 \rightarrow (-75)$

> 0

$$\dot{J}_{\text{tot}} A_{\text{mem}} \approx 2 \times 10^7 \text{ /s}$$

rat: 40 secs to leak out
squid: 10^5 sec to leak out

as leak occurs \Rightarrow concentration C_{in} of K^+ decreases forcing V_N^k to be less negative

\Rightarrow forces V_0 up, eventually opening up Na channels
Result: odd “wave of death” of action potentials firing all nearly at same time

Can achieve similar result pouring soy sauce on squid shortly after death ⇒ high Con of Na⁺ drives up V_{Na}^{Na}, driving up V_o & opening up Na channels (see video of “dancing” squid sushi)