Break problem into three parts:

1) how long on avg to leave initial state

2) which state do you visit after leaving i? (probability)

$\tau_i =$ avg. time it takes to get from i to i_c for first time
3) recursive argument \(\Rightarrow \) use results of 1) + 2) to build an equation for \(T_i \)

Element #1

\[
\frac{.3}{.3 + .1} = 0.75
\]

\(\Delta t = 1s \)

\(w_1 \Delta t = 0.05 \)

\(w_2 \Delta t = 10^{-20} \)

\(n \Delta t \equiv t + t + \Delta t \)

prob. of not leaving \(i = 1 - (w_1 + w_2) \Delta t \)

prob. that you leave state \(i \) exactly between time \(t + t + \Delta t \) \(\equiv f_i(t) \Delta t \)

note: \(\int_0^\infty dt f_i(t) = 1 \)
\[f_i(t) \delta t = \left[1 - (w_1 + w_2) \delta t \right]^n \left(w_1 + w_2 \right) \delta t \]

Prob. survive \(n \) time steps \(\Rightarrow \) prob. you die in next time step

In general,

\[\text{prob. of leaving } i \text{ in time step } \delta t = \sum_{j \neq i} \Omega_{ji} \delta t = |\Omega_{ii}| \delta t \]

Recall: \(\Omega_{ii} = -\sum_{j \neq i} \Omega_{ji} \) (b/c columns sum to zero)

\[\text{prob. of not leaving } i \quad \Rightarrow \quad 1 - |\Omega_{ii}| \delta t \]

\[\delta t f_i(t) = \left[1 - |\Omega_{ii}| \delta t \right]^n |\Omega_{ii}| \delta t \]

\[\delta t = \frac{t}{n} \]

\[\Rightarrow \quad \delta t f_i(t) = \left(1 - |\Omega_{ii}| \frac{t}{n} \right)^n |\Omega_{ii}| \delta t \]

Small \(\delta t \Rightarrow \) large \(n \)
\[f_i(t) = \exp(-1 \Omega_{ii} t) \Omega_{ii} \]

avg. escape time

\[\overline{t}_i^{esc} = \int_0^{\infty} dt \, t \, f_i(t) = \frac{1}{|\Omega_{ii}|} \]

i.e. \[|\Omega_{ii}| = 3 \, \text{s}^{-1} \]

\[\overline{t}_i^{esc} = \frac{1}{3} \, \text{s} \]

2) After escaping, which state did we end up in?

frog problem: prob. of dying via truck

\[= \frac{W_1 \delta t}{W_1 \delta t + W_2 \delta t} = \frac{W_1}{W_1 + W_2} \]
Prob. of meteor death = \(\frac{W_2}{W_1 + W_2} \)

In general \(\Pi_{ji} = \frac{\Omega_{ji}}{\Omega_{ii}} \)

\[\downarrow \]

Prob. of going to \(j \) after leaving \(i \)

\[\tau_{esc} = \frac{1}{W_2} \approx 10^{20} \text{ s} \]

\[\tau_{esc} = \frac{1}{W_1 + W_2} \approx 20 \text{ s} \]

Regardless of cause of death
note: probabilities of transition Ω_{ji} are time-independent