
PHYS 320 Problem Set 4
Mutation-selection balance

1 Background
At the beginning of the course we used a continuum approximation to describe diffusion of a
biological molecule randomly moving in one dimension (Lectures 4-5), leading to the diffusion
equation for the probability p(x, t) of finding the molecule at position x at time t:

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t). (1)

Here the diffusion constant D was related to the discrete hopping model via D = wa2, where
wδt was the probability to move one step either left or right in time step δt, and a was the length
of the step. If there were a bias in the hopping, where the rate of going right, w+, is different
from the rate of going left, w−, then the same continuum approach would give the Fokker-Planck
equation:

∂

∂t
p(x, t) = −v

∂

∂x
p(x, t) +D

∂2

∂x2
p(x, t), (2)

where v ≡ (w+−w−)a andD ≡ 1
2
(w++w−)a2. In the limit of equal rates,w+ = w− = w, we see

that Eq. (2) reduces to Eq. (1). We can view Eq. (2) as a biased diffusion equation, with theD term
(“diffusion”) describing the spreading of the probability distribution through randommotion, and
the v term (“drift” or “advection”) introducing an overall rightward (v > 0) or leftward (v < 0)
movement of the mean position.

It turns out that the mathematics of biased diffusion is also quite useful in a completely dif-
ferent biological area: modeling the random dynamics of a mutant genetic variant competing in
a population of non-mutants (“wild-types”). In Lecture 36 we introduced the Moran model to
capture these dynamics. Here we will try to understand the long-term behavior of the Moran
model in the presence of both natural selection and constant mutations back and forth between
the wild-type and mutant variants. (We assume that back mutation is possible, taking the wild-
type back to the mutant.) Rather than the mutant going extinct or taking over (fixing) in the
population, we will observe a new phenomenon: an equilibrium between the forces of selection
andmutation that allows for a mixed population of mutants and wild-types to persist indefinitely.
Under the right conditions it may be a factor in maintaining genetic diversity in nature.

This phenomenon ofmutation-selection balancewas mathematically modeled in a classic 1955
paper from Motoo Kimura, one of the founders of the field of theoretical population genetics. In
this problem set we will reproduce the main argument of the paper, and derive a very interesting
“phase transition” as a function of mutation rate. Kimura’s diffusion approach can be used on
manymicroscopic models of evolution, but theMoranmodel turns out to be a convenient starting
point, making the derivation relatively straightforward. By combining diffusion with evolution,
we come full circle with the course, demonstrating how the same theoretical framework can
describe biological processes at both the smallest and largest scales.
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Figure 1: Top: the states and transition rates in the discreteMoranmodel. Bottom: the continuum
approximation, where x = i/2N is the fraction of mutants in the population.

2 Details of the model
Let us first summarize the main aspects of the Moran model. We have a total population of 2N
alleles, and at any given time a number i of them are mutants, while the remainder 2N − i are
wild-type. At each time step one allele at random dies, and one allele makes a copy of itself
(possibly with a mutation, as described below). These dynamics ensure that the total population
remains always at 2N . We use i to denote the state of the system, so we can imagine a discrete
network of states (Figure 1) with transition rates between neighboring states. If we are currently
in state iwe denote w+

i as the probability to go to i+1 (gain a mutant) and w−
i as the probability

to go to i− 1 (lose a mutant).
As described in Lecture 36, there are four main probabilities to consider in the original Moran

model:

probability of choosing a wild-type to die: dwi =
2N − i

2N

probability of choosing a mutant to die: dmi =
i

2N

probability of choosing a wild-type to copy itself: bwi =
g(2N − i)

fi+ g(2N − i)

probability of choosing a mutant to copy itself: bmi =
fi

fi+ g(2N − i)

(3)

Here g is the fitness of the wild-type and f the fitness of the mutant. If f = g the copying
probabilities bwi and bmi just reflect that proportions of wild-type and mutant in the population.
But if f > g or f < g the mutant has a greater (or lesser) chance of reproducing than the
baseline expectation, reflecting the influence of natural selection. We will quantify this bias via
the selection coefficient s = f/g − 1.

We now add one additional component to the model: at every copying event there is a muta-
tion probability µ that the copy will switch types (a wild-type copy becoming a mutant, or vice
versa). As a consequence the probability rates of gaining or adding a mutant in the population
during one time step are as follows:

w+
i = dwi (b

m
i (1− µ) + bwi µ), w−

i = dmi (b
w
i (1− µ) + bmi µ). (4)

2



The rationale for these rates are as follows. In order to gain a mutant (w+
i ) we need one wild-

type to die (probability dwi ) and either one of two options: a mutant to copy itself and not switch
types (probability bmi (1 − µ)) or a wild-type to copy itself and switch types (probability bwi µ).
The expression for w−

i can be understood in a similar way. When µ = 0 we recover the original
model from lecture without mutation.

At first glance the overall picture is very similar to the discrete diffusion models from the first
part of the course, except that the transition rates w+

i and w−
i depend on the state i. Similar to

the approach in Lectures 4-5, we introduce a variable x = i/(2N), the fraction of mutants in
the population, and a step size a = 1/(2N) (corresponding to a microscopic change in x when
i changes by 1). In the continuum limit of small a (large N ), the expressions in Eq. (4) become
continuous functions w+(x) and w−(x). Using the continuum approximation as in Lectures 4-5,
the corresponding Fokker-Planck equation turns out to be:

∂

∂t
p(x, t) = − ∂

∂x
(v(x)p(x, t)) +

∂2

∂x2
(D(x)p(x, t)) , (5)

where v(x) ≡ (w+(x) − w−(x))a and D(x) ≡ 1
2
(w+(x) + w−(x))a2. Note that x must be in

the range 0 ≤ x ≤ 1, so the probability satisfies the normalization condition
∫ 1

0
dx p(x, t) = 1.

Our goal in the problem set is to analyze this evolutionary Fokker-Planck equation and derive
the behavior of p(x, t) in the limit t → ∞.

Before starting the derivation, note that Eq. (5) has the structure of a continuity (conservation
of probability) equation. We can see this by rewriting it as:

∂

∂t
p(x, t) = − ∂

∂x
J(x, t), (6)

where
J(x, t) ≡ v(x)p(x, t)− ∂

∂x
(D(x)p(x, t)) (7)

is called the probability current, with J(x, t) > 0 corresponding to net probability flow to the
right (toward higher x). If we were to integrate both sides of Eq. (6) over a region a ≤ x ≤ b, we
would get:

d

dt

∫ b

a

dx p(x, t) = J(a, t)− J(b, t). (8)

Hence the rate of change in the total probability between a and b is just the probability current
flowing into the region, J(a, t), minus the probability current flowing out, J(b, t).
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3 Questions

a) The first step is to write down simplified expressions for v(x) and D(x). Plug i = 2Nx and
f = g(1 + s) into the expressions from Eqs. (3), and then simplify the resulting rates in Eq. (4)
so that w+(x) and w−(x) depend only on x, µ, and s. In most biological scenarios both selection
coefficients and mutation rates are small, |s| � 1, µ � 1. Taylor expand v(x) and D(x) to the
smallest non-vanishing order in s and µ, and show that:

v(x) ≈ 1

2N
((1− 2x)µ+ sx(1− x)) , D(x) ≈ x(1− x)

4N2
. (9)

For v(x) we have ignored second-order terms (∝ µs, s2, or µ2) and higher. For D(x) there is a
non-vanishing zeroth order term, so we ignore first-order and higher. Show that based on the
form of v(x) andD(x) we know that the integral

∫ 1

0
p(x, t) does not change in time: the Fokker-

Planck equation preserves the normalization of p(x, t) over time.

b) In the limit t → ∞, the solution p(x, t) of a Fokker-Planck equation with time-independent
v(x) and D(x) goes to an equilibrium distribution, p(x, t) → peq(x). This corresponds to the
left-hand side of Eq. (6) going to zero. There is a special case where finding peq(x) is particularly
simple: assume that v(x) takes the form v(x) = −D(x)∂Φ(x)/∂x for some function Φ(x). For
now do not try to find the specific expression for Φ(x) in our model, since we will do so in the
next part. Prove that under this assumption the equilibrium distribution has a Boltzmann-like
form, peq(x) = A exp(−U(x)), where U(x) = Φ(x) + lnD(x) and A is a normalization constant
(which we will not worry about in this derivation). Hint: show that J(x, t) = 0 when you plug
in the equilibrium distribution. This guarantees that the left-hand side of Eq. (6) is zero.

c) Show that v(x) = −D(x)∂Φ(x)/∂x is indeed valid for our model, by finding an expression
for Φ(x). Hint: you may find the following integral useful:

∫
dx 1−2x

(1−x)x
= ln(x(1− x)).

d) Test out whether your answer makes intuitive sense by plotting U(x) for several cases. First
try out N = 1000, µ = 0.01 and three different s values: s = −0.05, 0, 0.05. You should see
that U(x) in these cases has a minimum at some value of x between 0 and 1, which corresponds
to the maximum of peq(x): the most likely value of x in the long-time limit. The minimum
of U(x) is at x = 1/2 for s = 0, since in the neutral case there should be roughly the same
number of mutants as wild-types in the population. It is shifted to the right or left respectively
for s > 0 and s < 0, reflecting the selective bias when the mutant has greater or lower fitness
than the wild-type. But note that the minimum does not reach x = 0 or 1. This is precisely the
phenomenon of mutation-selection balance: even when s > 0 and the minimum is shifted close
to 1 (all mutants), there is always mutation replenishing the wild-types and keeping them from
entirely disappearing. Similarly for s < 0: mutation prevents the mutants from going entirely
extinct, and the minimum stays above 0.

e) The model has one more surprise in store: repeat the plots of part d), but make the mutation
probability much smaller: µ = 0.0001. You should notice a strange behavior: U(x) flips upside
down, becoming concave instead of convex. Now the minimum of U(x) occurs either at x = 0
(for s < 0), x = 1 (for s > 0), or there are equal minima at both x = 0 and x = 1 (for s = 0).
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To explain this behavior, find an expression for ∂2U(x)/∂x2. Show that the second derivative is
positive at all x for µ > µc, where µc is some threshold value, and negative for µ < µc. Find an
expression for µc. Hint: you will see that our old friend, the effective population sizeN , plays an
important role.

Thus the model shows that mutation-selection balance depends on the strength of µ. If mu-
tations are infrequent enough (µ < µc) selection dominates, and the population will spend most
of the time either with no mutants (x = 0) or mutants fixed (x = 1). Only when µ gets above
a certain threshold will it be competitive with natural selection. This is particularly relevant to
evolving populations with high mutation rates (for example viruses).
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