
PHYS 414 Problem Set 1: Chaos, machine learning, and aliens
Problem 1: Trajectories, chaos, and the Markovian assumption

In this problem we will investigate one of the basic claims made in class: if we have sufficient
randomization of a system over a timescale δt, the Markovian assumption should hold for transi-
tion probabilities between states of that system. In other words, the chance of observing a state
at some time t + δt will depend just on the state at time t, and not on the states at earlier times
t − δt, t − 2δt, etc. In order to test this, we need a system that exhibits chaotic dynamics, since
that is what ultimately allows for randomization. One of the simplest such chaotic systems is a
special case of the so-called logistic growth model.

To understand the model, it is easiest to consider an ecological analogy: imagine a population
of organisms whose population at the beginning of the ith time step is ni. Each time step is a full
generation, where the current population gives birth to offspring and dies off, so that at the next
time step we have some population ni+1. If each organism leaves behind 4 surviving offspring, we
have ni+1 = 4ni, and the population grows exponentially. More realistically, we might imagine
that there are finite resources in the environment, so that it can sustain at most K organisms—
this is known as the carrying capacity of the environment. The closer the population ni is to K ,
the fewer resources there are for offspring to survive, which we can represent by modifying the
growth equation to the following form (known as discrete-time logistic growth):

ni+1 = 4ni

(
1− ni

K

)
. (1)

When ni is near K , the resources are so scarce you can actually have population decrease be-
tween generations, ni+1 < ni. For simplicity, let us focus on the variable xi = ni/K , which
measures how much of the carrying capacity has been filled at the ith time step. The logistic
growth equation in terms of this variable can be found by dividing Eq. (1) by K :

xi+1 = 4xi (1− xi) . (2)

This equation has a fascinating diversity of dynamics depending on the value of the prefactor,
which in our case is 4. (For more details, see: https://en.wikipedia.org/wiki/Logistic_map.) For
our choice of prefactor, this equation represents one of the simplest examples of chaos, as we will
verify below. Note that by construction the magnitude of xi is always between 0 and 1 at every
generation.

a) Write a progam that allows you to iterate Eq. (2) starting from any initial value x0, in order
to generate a trajectory (x0, x1, x2, . . .). Compare two trajectories, for example one starting at
x0 = 0.1, and the other starting at x′

0 = 0.1 + 10−8. Plot the absolute differences δi = |xi − x′
i|

between the trajectories over several hundred time steps (a log scale will help with the visu-
alization). Check that δi initially increases exponentially (roughly linearly on a log graph), and
then eventually saturates as you approach about 50 steps. This exponentially growing divergence
between trajectories that start with very similar initial conditions is the hallmark of chaos, the
so-called butterfly effect. (The trajectories cannot continue diverging forever, because both xi

and x′
i have to be between 0 and 1, and hence their absolute difference cannot grow indefinitely.)

Thus if we have to choose a randomization time scale, setting δt = 50 time steps should ensure
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that the system is maximally randomized, and has had sufficient time to “forget” about its past
history.

b) Now let us define coarse-grained “macrostates” for the system, which we record every δt = 50
time steps. The macrostates are yi = s(xiδt), where

s(x) =


1 if 0 ≤ x < 1/4

2 if 1/4 ≤ x < 1/2

3 if 1/2 ≤ x < 3/4

4 if 3/4 ≤ x ≤ 1

. (3)

This essentially sorts x into four equally sized bins, labeled 1 through 4. So for example if we ran
a trajectory of 200 time steps starting from x0 = 0.1, and recorded every 50 time steps as

(x0, x50, x100, x150, x200) = (0.100, 0.560, 0.372, 0.787, 0.0874), (4)

the corresponding trajectory of states would be

(y0, y1, y2, y3, y4) = (1, 3, 2, 4, 1). (5)

We would like to verify that the state dynamics are Markovian. To do this, let us create an
ensemble of trajectories in the following way: every trajectory will start in state 1, so we choose
x0 randomly between 0 and 1/4. Then iterate Eq. (2) over two hundred steps, and record every δt =
50 steps to get a sequence (y0, y1, y2, y3, y4). Repeat this whole procedure a large number of times
(for example a million), and store in an array for later processing. We will thus have an ensemble
of a million trajectories all starting from state 1. To calculate any conditional probability, we just
have to count entries in this array.

As an example, let us say we were interested in the conditional probability P(y4 = j|y3 = 1).
This is the probability of observing state j at time t4 = 4δt, given that the previous observation
y3 was state 1. In terms of our ensemble, this can be estimated as

P(y4 = j|y3 = 1) ≈ # of trajectories of form (∗, ∗, ∗, 1, j)
# of trajectories of form (∗, ∗, ∗, 1, ∗)

. (6)

Here ∗ represents any state number. Similarly if we were interested in P(y4 = j|y3 = 1, y2 = k),
the probability of observing y4 = j given that the previous two states were k and 1, this can be
calculated as

P(y4 = j|y3 = 1, y2 = k) ≈ # of trajectories of form (∗, ∗, k, 1, j)
# of trajectories of form (∗, ∗, k, 1, ∗)

. (7)

Verify that in this case the Markovian assumption is true:

P(y4 = j|y3 = 1, y2 = k) ≈ P(y4 = j|y3 = 1), (8)

for any choice of j or k. In other words, to know the probability of observing some y4, we only
need to know y3, and not any state before y3. Of course here we only checked Markovianity for
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y3 = 1, but we could equally have shown it for any other value of y3 (you do not need to do
this). The main reason that Markovianity works is that δt = 50 is longer than the timescale for
trajectories to diverge due to chaos. Hence the precise value of y2 does not matter when we look
at y4: the “memory” of the system does not extend that far back.

c) The validity of the Markovian assumption depends on the proper choice of δt. Had we chosen
δt smaller than the timescale of randomization, then Markovianess may not have worked. Repeat
the calculation of part (b) but use a timescale δt = 1 step to record states (hence you only need
to run trajectories up to x4). Show that in this case

P(y4 = j|y3 = 1, y2 = 1) 6= P(y4 = j|y3 = 1, y2 = 4) (9)

for some states j, and hence Eq. (8) is no longer true. Here the probability of observing a certain
y4 is influenced by not just the immediate previous observation y3, but also depends on y2. The
“memory” extends at least to y2, and hence the system is not Markovian at these short timescales.
Thus in general wewill need two ingredients for theMarkovian assumption towork in our coarse-
grained dynamical descriptions of systems: (i) we need some underlying chaotic dynamics to
ensure randomization; (ii) we need to wait a sufficiently long time δt between observations to
ensure the memory of the system extends no further than the previous step.

d) Return to the setup of part (b) where δt = 50 time steps. We will stick with this choice for
the rest of the problem set. Using the ensemble obtained in (b), calculate the full 4× 4 transition
matrix W (t3), whose elements are defined as

Wij(t3) = P(y4 = i|y3 = j) ≈ # of trajectories of form (∗, ∗, ∗, j, i)
# of trajectories of form (∗, ∗, ∗, j, ∗)

. (10)

In fact, you can calculate this transition matrix for any of the time steps. For example at the
previous time step the matrix elements are

Wij(t2) = P(y3 = i|y2 = j) ≈ # of trajectories of form (∗, ∗, j, i, ∗)
# of trajectories of form (∗, ∗, j, ∗, ∗)

. (11)

Verify that for this system the transition matrix remains the same at each time. In other words,
check that:

W (t1) ≈ W (t2) ≈ W (t3) (12)

Note that for the very first transitionmatrix,W (t0), you only can get statistics for the first column,
because in your ensemble you always started from state 1 at t0. But if you look at the first column
of W (t0), it is approximately the same as the first column of W (tn) for n > 0.

e) The state probability vector at each time p(tn) has components pi(tn) = P(yn = i). We know
from class it should obey the discrete-time master equation

p(tn+1) = W (tn)p(tn). (13)

So the probability distribution of states at time t4 can be found by iterating the above equation,

p(t4) = W (t3)W (t2)W (t1)W (t0)p(t0). (14)
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Using the results from part (d), calculate p(t4) via the above equation. Note that since we always
start in state 1 in our ensemble, p(t0) = (1, 0, 0, 0). (Though you have not explicitly calculated
the full matrixW (t0), it turns out you only need to know the first column to calculate the product
W (t0)p(t0).)

To check that the master equation and your ensemble agree with each other, calculate p(t4)
directly from your ensemble. In other words,

pi(t4) = P(y4 = i) ≈ # of trajectories of form (∗, ∗, ∗, ∗, i)
# of trajectories of form (∗, ∗, ∗, ∗, ∗)

, (15)

for i = 1, . . . , 4. Check that this is equal to the result you got from Eq. (14).

f) Using a procedure analogous to Eq. (14), calculate the probability vectors at all earlier time
steps: p(t1), p(t2), …. Check to see if the probabilities converge to constant values as time pro-
gresses: does the system reach a stationary state where the probabilties stop changing, p(tn+1) ≈
p(tn) for sufficiently large n?
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Problem 2: Machine learning as Bayesian model fitting
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Figure 1: Training data.

In this problem we will see how fitting
data to a model using machine learning can
be framed in terms of Bayes’s theorem. As
described in class, we introduce a very sim-
ple classification problem: the input is a two-
component vector x = (x1, x2), which has to
be classified as either type 1 or type 2. We have
N = 100 properly classified examples, shown
in Fig. 1. These data points can be downloaded
from the link: hinczlab.org/phys414/mldata.
csv. The file has 100 rows, one per data point,
with three columns separated by commas. The
nth row has the format: x(n)

1 , x(n)
2 , `n. Here `n is the label (type) of the nth data pointx(n) = (x

(n)
1 ,

x
(n)
2 ). The goal is to design a network that can take a vector x it has never seen before, and tell

us the probability that this vector belongs to either type 1 or type 2.
Because the classification problem is low-dimensional and straightforward, we do not need a

complex network. For our purposes, the following will suffice. Consider a network whose input
is x and output is p1(x;w), the estimated probability that x belongs to type 1. This network
depends on the parameters w = (w1, w2, w3) in the followng way,

p1(x;w) = σ(w1x1 + w2x2 + w3), (16)

where the nonlinear function σ(y) is defined as

σ(y) =
1

2
(1 + tanh y). (17)

By construction σ(y) can take any real y (positive or negative), and outputs a number between 0
and 1. Thus it is perfect for our case, where we want p1 to correspond to a probability.

Let us now set up the Bayesian framework. The probability that we assign to a single labeled
data point (x(n), `n) is related to the network output as follows:

P((x(n), `n)|w) =

{
p1(x

(n);w) if `n = 1

1− p1(x
(n);w) if `n = 2

. (18)

Note that the second line reflects the fact that if we want to know the probability of something
labeled as type 2, it is just one minus the type 1 probability. Since each data point is independent
from the rest, the probability the network assigns to the whole data set D is just

P(D|w) =
N∏

n=1

P((x(n), `n)|w). (19)

Prior to any training, we have to make some assumptions about the network parameters, in
order to keep them in reasonable ranges which prevent numerical errors. The most commonly
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used assumption is that the parameters are drawn from independent Gaussian distributions with
zero mean and standard deviation s,

P(w) =
1

(2πs2)3/2
exp

(
−w2

2s2

)
. (20)

The parameter s is known as a regularization parameter, and controls the width of this prior
distribution. Unless otherwise noted, we will set s = 1. As we will see below in part (d), if
you make your prior too restrictive (s too small) you limit the range of networks the fitting can
explore, and you will not be able to find a network that describes the data well.

The posterior distribution P(w|D) is given by Bayes’s theorem:

P(w|D) =
P(D|w)P(w)

P(D)
. (21)

The goal in this problem set will be to find a set of network parametersw that maximizesP(w|D),
and hence gives you a network that is most likely to describe the data. In a later problem set
we will revisit this problem and figure out a way to estimate the whole posterior distribution
P(w|D). Knowing the full distribution is at the heart of Bayesian machine learning: it gives you
a sense of howmany alternative network parameter sets could have described the data, and hence
a measure of how confident you can be in the network’s prediction. For now, it is sufficient to
find at least one network that solves our problem.

a) Write down (and simplify as much as possible) an expression for the loss function L(w|D) =
− logP(w|D). Minimizing the lossLwill be equivalent to maximizing the posterior distribution.
For simplicity, throw out any terms that do not directly depend on w, for example − logP(D).
These will not be relevant to our minimization problem. Write a program to evaluate this loss
function for our training data set D. Set your regularization parameter to s = 1. Plug in a few
different choices of the parametersw and see how the loss function behaves. See if you can tweak
the parameter values to make the loss function smaller.

b) Trying to find the minimum of L by hand is not an efficient strategy, and would be impossible
if the number of parameters were larger (in real-world applications the dimension of the vector
w might be in the hundreds of millions). There are many methods to numerically minimize a
function like L, and here we will explore the simplest procedure, known as gradient descent. The
idea is to imagine L(w|D) as a landscape dependent on the three parameters w = (w1, w2, w3).
At any point w on this landscape, the gradient vector

∇wL(w|D) = (∂w1L(w|D), ∂w2L(w|D), ∂w3L(w|D)) (22)

tells us the direction in which the landscape is increasing most steeply. If we want to minimize
L, we should travel opposite to this direction, like gradually descending a mountain. Imagine we
are making consecutive guesses as to where the minimum lies, w(m), for m = 0, 1, 2, . . .. Then
the algorithm tells us the next guess should be related to the gradient at the current guess in the
following manner:

w(m+1) = w(m) − η∇wL(w(m)|D). (23)
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Theparameter η is known as the learning rate, and controls howquicklywe descend themountain.
Typically η is kept small to prevent overshooting the minimum, but if we make η too small it
will take forever to reach the minimum. For this problem η = 0.01 should work well. Write a
program that implements gradient descent: starting from some initial guess, for example w(0) =
(1, 1, 1), the program should iterate Eq. (23) for several thousand steps, until you have converged
on a parameter set w(m) at large m that approximately minimizes the loss. Call this best guess
parameter set w∗. Check that this parameter set performs at least equal to (or hopefully better)
than what you found by hand in part (a). Hint: before writing the program, write down an
analytical expression for the gradient in Eq. (22). Be careful to note that the mathematical form
of each term in the gradient corresponding to a labeled data point depends on the value of `n for
that point.

c) To see how well your network performs, here are three new vectors that were not in your
training data: xA = (−1,−4), xB = (−1,−1), and xC = (−1, 3). These will be our testing data.
Evaluate the network output p1(x;w∗) for each of these x using your best-guess parameter set
w∗ from part (b). If you have found a decent solution, the probability of being of type 1 should
be close to zero for xA, somewhere in the middle for xB , and close to 1 for xC . If this is the case,
congratulations, you have “taught” your machine well!

d) Of course the precise network parameters w∗ you find from part (b) depend on your choice
of prior distribution, controlled by the parameter s. Repeat parts (b) and (c) but using a much
narrower prior distribution, with s = 0.1. Because you have constrained the range of network
parameters to be much smaller (increasing the penalty for larger values of wi) , the results should
be worse: your loss function at w∗ should be larger, and when you test the data in part (c) you
should find inaccurate assignments of probabilities. Now repeat (b) and (c) with a much looser
prior, s = 10.0. Here you should find decent results. The network parameters may be different
from those found with s = 1, the algorithm still manages to find a good solution. Often the
goal of machine learning is not necessarily to find a unique best solution, but something that
“works” well for the task at hand. Parameters that influence the training, like s and η, are known
as hyperparameters and have to be chosen carefully for the whole procedure to work.
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Problem 3: Are we alone in the universe?

In this problemwewill see howBayesian analysis can help us estimatemodel parameters even
in the extreme case of a single datapoint: life had to arise on Earth earlier than 3.5 Gyr (gigayears)
ago (see Fig. 1 for the oldest fossilized evidence currently known). As of now we have no other
datapoints of life existing anywhere in the universe (though according to a study published in
January 2015 there are tantalizing indications that the Curiosity rover on Mars may be on the
verge of adding another datapoint; see part (e) of this problem for an actual calculation of what
this would imply). In general, can we say anything about the likelihood of life arising from non-
living matter, a process known as abiogenesis? Life began early in the Earth’s history: the Earth is
4.5 Gyr old, and life arosewithin the first 1 Gyr of its existence, though almost certainly not within
the first 0.5 Gyr because conditions on the very early Earth were inhospitable. This fact seems to
support the idea that abiogenesis is a typical occurrence in the universe, fueling optimism about
life existing on many Earth-like exoplanets in habitable zones around Sun-like stars. The current
estimate based on data from the Kepler spacecraft is that there could be roughly ≈ 1010 such
planets in the Milky Way alone [Petigura et al., Proc. Natl. Acad. Sci. 110, 19273 (2013)]. If they
are of comparable age to the Earth, what fraction of them harbor life? Is the optimism justified?

Figure 2: Datapoint #1: fossilized evidence of
microbial communities dating back to 3.5 billion
years ago, discovered in western Australia [Nof-
fke et al., Astrobiology 13, 1103 (2013)].

A more careful evaluation using Bayesian
analysis was performed by David Spiegel and
Edwin Turner [Proc. Natl. Acad. Sci. 109, 395
(2012); posted on the course website]. We will
derive (in simplified form) a version of their
main results. The goal is to determine the con-
ditional probabilityP(x|D). Here x are the pa-
rameters in a theoretical model for abiogenesis
(in our case a single parameter). D is the data,
which consists of humans having “measured”
that life arose on earth by a time temerge ≈ 1
Gyr after the planet’s formation. The condi-
tional probability P(x|D) encapsulates what
we can say about x given the existing data. To
evaluate it, we use Bayes’s rule:

P(x|D) =
P(D|x)P(x)

P(D)
(24)

The denominator P(D) is a independent of x, so we can treat it as a normalization constant
ensuring that

∫
dxP(x|D) = 1. To complete the analysis, we need expressions for P(D|x) and

P(x). The latter represents our prior knowledge (rough guess-work!) about x. Let us find each
of these expressions in turn.

a) The first ingredient is a model for abiogenesis. We start with the assumption that conditions
on a planet right after its formation will not allow life, up until some minimum time tmin has
passed. If t = 0 is the time of planetary formation, we will fix tmin ≈ 0.5 Gyr, assuming it is
comparable for all Earth-like planets. Though abiogenesis is a complex series of chemical events,
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we can combine them all into a single overall “reaction”, which happens at an unknown constant
rate λ (a Poisson process) for all times t ≥ tmin. More precisely, λ is the probability per unit
time of abiogenesis, so that the probability of life arising in some short interval dt is λdt (or
equivalently, 1−λdt is the probability that life did not arise in this interval). The probabilities in
each consecutive interval (i.e. t to t+dt and t+dt to t+2dt) are independent of each other. This
model does not preclude life arising independently multiple times, but we are only interested in
the first instance. Given the above assumptions, use the laws of probability (and the limit dt → 0)
to show that the probability that no life has arisen up to time t after a planet’s formation is:

Pno-life(λ, t) =

{
1 0 ≤ t < tmin

e−λ(t−tmin) t ≥ tmin
(25)

Hence the probability that life has arisen (at least once) before time t isPlife(λ, t) = 1−Pno-life(λ, t).
This will be our main model, governed by a single parameter λ which we would like to pinpoint.
(As we will see in part (b), we will do this by estimating x ≡ log10 λ, the overall order of magni-
tude.)

b) If you assume λ is set by fundamental chemistry and is the same throughout the universe, let
us get a feel for the consequences of its scale. Find the different numerical values of λ (in units
of Gyr−1) that would imply the following facts are true for Earth-like planets of comparable age
to ours (t0 = 4.5 Gyr):

• λ1: on average, we are the only such planet at the present time in the entire observable
universe where life has emerged (out of ≈ 1020 Earth-like planets of similar age in the
universe). In other words, Plife(λ1, t0) = 10−20.

• λ2: on average, we are the only such planet at the present time in the Milky Way where
life has emerged (out of ≈ 1010 Earth-like planets of similar age in our galaxy). In other
words, Plife(λ2, t0) = 10−10.

• λ3: 99.9999% of Earth-like planets of similar age have life. In other words, Plife(λ3, t0) =
0.999999.

From top to bottom, these give you a sense of the immense breadth of possible λ values. Since
we do not even have a grasp of its order of magnitude, our prior probability distribution should
reflect this. Let us define x = log10 λ and say that all orders of magnitude between xmin = log10 λ1

and xmax = log10 λ3 are equally probable. In terms of this parameter x we will choose our prior
probability distribution to be:

P(x) =

{
1

xmax−xmin
if xmin ≤ x ≤ xmax

0 x < xmin or x > xmax
(26)

c)The implications of our single datapointD are more complicated than just specifying an upper
bound on Earth’s abiogenesis. What D really states is that: “an intelligent life form on Earth
was able to gather evidence at the present time (t0 = 4.5 Gyr) showing that life started before
a time temerge = 1 Gyr in the Earth’s history.” This presupposes that enough time has passed
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between temerge and the t0 for evolution to produce a scientifically-advanced species capable of
investigating fossil evidence of abiogenesis. If life on Earth emerged at t = 4.0 Gyr, there almost
certainly would not be enough time for evolution to produce a species to collect the datapoint D
at t0. Let us specify a minimum time delay δtevolve for the evolution of an intelligent species after
abiogenesis. Then only abiogenesis events where temerge < t0 − δtevolve ≡ trequired could have any
possibility of beingmeasured. Let us choose δtevolve = 1Gyr to set a rough time scale (probably on
the short side) for the evolution of intelligence, so trequired = 3.5 Gyr is the cutoff for measurable
abiogenesis required by evolutionary constraints. Let E be the statement “abiogenesis occurred
between tmin and temerge”, andR be the statement “abiogenesis occurred between tmin and trequired”.
Then we will take P(D|x) to mean P(E|R, x), or the probability that E is true given that R is
true and the model parameter value is x. Using the laws of probability and the result of part (a),
argue that for any measured value of temerge,

P(D|x) =

{
Plife(10

x,temerge)

Plife(10x,trequired)
if tmin ≤ temerge ≤ trequired

0 if temerge < tmin or temerge > trequired
(27)

Hint: Think about the definition of conditional probability. Also note that if tmin ≤ temerge ≤
trequired, then R is definitely true if E is true.

Figure 3: Datapoint #2 (hypothetical):
the Gillespie lake outcrop on Mars ex-
hibiting potential signs of microbial
structures.

d) Putting the result of parts (b) and (c) together,
use Bayes’s rule to determine the posterior probability
P(x|D). Make sure to normalize by choosing some ap-
propriate numerical value for P(D). Plot P(x|D) ver-
sus x to see how the probability behaves. Using numer-
ical integration, figure out the probability that x is be-
tween xmin and xmid = log10 λ2. Let us call this proba-
bility pL, where L represents extreme loneliness (we are
surely alone in our galaxy, and possibly the observable
universe). On the other extreme, figure out the proba-
bility pM that 99% or more of Earth-like planets of com-
parable age to ours have seen life emerge. M represents
“the more the merrier.” How do you like these odds?
Hint: you may find your numerical integrator (Mathe-
matica⁉!) gives nonsense when you try to extend the
integration range down to xmin. To solve these numerical issues, use the following trick: if you
need to integrate a function f(x) from xmin to xmax, you can break the integral into two pieces:∫ xmax
xmin

dx f(x) =
∫ xmid
xmin

dx f(x) +
∫ xmax
xmid

dx f(x). The first piece you can evaluate analytically by
using the x → −∞ limit of f(x). It goes to a simple constant f0 (which you can find by Taylor
expansion in terms of small 10x), so

∫ xmid
xmin

dx f(x) ≈ f0(xmid − xmin). The second piece you can
evaluate numerically.

e) Nora Noffke, the geobiologist responsible for discovering the oldest fossils on Earth (Fig. 1)
published an article recently analyzing photos taken by the Curiosity rover onMars (Fig. 2; see the
write-up at: http://shar.es/1bNqS7). She makes a case that Mars exhibits structures remarkably
similar to fossilized microbial mats seen on Earth. If these speculations are proven to be true, we

10

http://shar.es/1bNqS7


would have a second datapoint. What would be the consequences? The Gillespie lake outcrop on
Mars where these photos were taken is 3.7 Gyr old, so tMars

emerge = 0.8 Gyr (Mars has the same age
as Earth). Assuming tmin is unchanged for Mars, and that life arose there independently of Earth,
how would P(D|x) change with two datapoints? Recalculate pL and pM from part (d) (be careful
to find the new normalization constant of the distribution first). That’s a big pretty big difference,
no? Stay tuned: searching for fossilized microbial mats is a major target for the upcoming Mars
2020 rover.

Note: a more complete Bayesian analysis would have allowed the other parameters like tmin
and δtevolve to vary, with appropriately chosen prior probabilities. This would be significantly
more complex, beyond the scope of the problem set. If you are overly bothered by these limita-
tions, feel free to do the analysis and write a research article!
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