
PHYS 414 Problem Set 2: DNA, disease, driving
Problem 1: Unwinding DNA
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Helicases are proteins that can slide along single-stranded DNA, hopping between adjacent
bases, mainly in one direction. They cannot move along double-stranded DNA, so a junction of
two single strands, as shown above, is an obstacle to the helicase. The statistical physics of this
protein can be described by a simple model, first introduced by Betterton and Jülicher [Phys. Rev.
Lett. 91, 258103 (2003)]. Imagine that one strand of the DNA is oriented along the x̂ axis, and
denote the location of the helicase as h∆x, where h is an integer, and∆x is the distance between
bases. The location of the junction (the first base pair in the double-stranded portion) is j∆x for
some integer j, where j > h. For a small time step δt, the probability of the helicase moving
one base to the right (h increasing by 1) is κ, but only if j > h + 1 (there is an open base of
single-stranded DNA to the right of the helicase). If j = h + 1 the helicase cannot move. For
simplicity we will assume the probability of helicase left steps is negligible. The probability of the
junction moving to the right (a base pair unzipping, increasing j by 1) is α, while the opposite
process (a base pair rezipping, decreasing j by 1) has probability β. This rezipping cannot occur
if the helicase is in the way, when j = h+1. Generally α < β, so if the helicase is not obstructing
(j > h+1) the junction will on averagemove left, rezipping the DNAwith velocity (α−β)∆x/δt.
If the helicase is obstructing (j = h+1) then the junction will on average move right, unzipping
the DNA with velocity α∆x/δt. Similarly, if the helicase is not next to the junction (j > h+ 1),
the helicase on average moves to the right with velocity κ∆x/δt. If the helicase is next to the
junction (j = h+ 1) its velocity is zero.

a) Label the state of the system by the separation n ≡ j − h = 1, 2, 3, . . .. Write down the
transition matrix W for this system. Note: The transition matrix is infinite, because n can be
arbitrarily large, so it is enough to write down the entries in the first few rows and columns of
W , to see the pattern of the whole. You should find that the only nonzero entries in the matrix are
either along the diagonal, or right next to the diagonal. In calculating the probability of seeing a
transition n → n + 1 or n → n− 1 in time step δt, keep in mind the following assumptions: 1)
All the different events described above (h increasing by 1 or j changing by±1) are independent.
Hence if a certain change in n can happen in more than one way, the probabilities of those
different ways add together. 2) To make life simple, we will assume that α, β, and κ are small
enough that products of any two of them can be neglected. For example the probability that h
increases by 1 and j decreases by 1 in the same time step is βκ, but we will assume this is � 1
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and ignore it. Thus the entries in W should be of linear order in α, β, and κ, with all quadratic
terms and higher neglected as an approximation. In any real physical system, we can generally
choose δt to be small enough for this approximation to be valid.

b)What does the graph corresponding to the matrixW look like? Argue that it is microscopically
reversible and hence ergodic. Thus as t → ∞, we expect that pn(t) → psn. To find the stationary
distribution ps, look at corresponding eigenvalue equation:

Wps = ps

Though this is an infinite matrix multiplying an infinite vector, we can use the fact that most of
the entries of W are zero to make progress. Show that the eigenvalue equation leads to a set
of recursion relations for the vector elements psn, n = 1, 2, . . .. Show that the solution of these
recursion relations is psn+1 = cpsn, where c is a constant. Find c in terms of α, β, and κ. Hence
we know that psn = cn−1ps1. To complete the solution for the stationary distribution, we need
to find the value of ps1, which we can do by demanding the stationary distribution be properly
normalized:

∑∞
n=1 p

s
n = 1. [Note that even when pn(t) = psn, the helicase and the junction

are still moving: it is only the distribution of their separations that becomes time-independent.]
Useful identity:

∑∞
k=1 x

k = x/(1− x) for |x| < 1.

c) Once the system has reached the stationary state, what is the overall mean velocity of the
helicase? Hint: Based on the description in the introduction, consider how the velocity of the
helicase depends on n. Then sum over the different possibilities, weighted by the probability psn,
to find the overall mean.

d) Once the system has reached the stationary state, what is the overall mean velocity of the
junction? How does the mean velocity of the junction compare to that of the helicase from part
c? Note that this relationship between the two velocities is a special feature of the fact that this
is a stationary state.

e)The energy level of a DNA base pair in the unzipped state is ε > 0 larger than the energy of the
zipped state (because we have broken bonds to unzip). If there is one zipped and one unzipped
conformation for the base pair, use the principle of local detailed balance to relate α and β to ε
and T (the temperature of the environment). Note that β in this problem is a probability, and not
the inverse temperature. If we assume that β � κ, as is typically the case, what happens when
ε gets larger (for example certain base pairs might have stronger interactions than others): does
the helicase slow down or speed up? Does this result make physical sense?
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Problem 2: Disease spreading

We will consider a simple model of a single individual spreading a disease to a larger popu-
lation. The individual may either be infectious (capable of spreading the disease) or not infectious
(incapable of spreading the disease). Label the two conditions I and N. If we embed this individ-
ual in an arbitrarily large (infinite) healthy population, we can keep track of k, the number of
people this individual has infected. Let state 1 correspond to the situation where the individual is
N, regardless of what the value of k may be (the individual’s contagious period is over, whether
because of recovery or death). Let state 2 correspond to the individual being I, with k = 0 (no
spreading has occurred yet). State 3 is I and k = 1 (one other person has been infected by the
individual). We continue the pattern of labeling states, and thus state m for m ≥ 2 corresponds
to the individual being I and k = m − 2. Since the population is infinite, there are infinite pos-
sible states. Note we are only focusing on how many spreading events are due to our original
contagious individual. We are not counting subsequent secondary infections in the population.

We consider two possible transition events that can occur at each time step δt. 1) With prob-
ability r the individual can recover. The means that every state m ≥ 2 can transition to state 1
with probability r. 2) If the individual is I, with probability g one more person from the healthy
population can get infected by the individual. This means that every state m ≥ 2 can transition
to state m+ 1 with probability g. The kinetic network for this system is illustrated below:

N I I I
k = 0 k = 1 k = 2g g

r
r r

state 1 state 2 state 3 state 4

Note that this network is not ergodic, but it does have a unique stationary state: if we wait
long enough, we will eventually end up in state 1 with probability 1. We will be interested in
particular about two aspects of the network dynamics.

The first question: if we start in state 2, how many people will get infected on average before
the individual stops being infectious (transitions to state 1). In other words, how far on average
will we travel to the right before returning to state 1. The answer to this question is an important
number in epidemiology: the basic reproduction number R0, the average number of new cases of
infection that will be generated by the individual during a single round of the disease (counting
only cases directly started by the individual). The common cold has anR0 ≈ 6, while for measles
R0 ≈ 15, at the high end of the contagiousness scale among all known diseases. Ebola hasR0 ≈ 2,
and estimates for COVID-19 ranged from 2 − 4 at the beginning of the pandemic. Food-borne
illnesses like salmonella are on the low end of the spectrum, with R0 < 1. The second question:
what is τ̄ , the average number of time steps the individual stay infectious?
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In this problem, we will prove the following simple relations:

R0 =
g

r
, τ̄ =

1

r
.

As it turns, getting to these expressions will require some work. Intuitively, the result for R0

just states that R0 = gτ̄ . In other words, the number of infections caused by the individual is
the average number of time steps times the probability of spreading the infection per time step.
Two sum identities will prove useful in this problem: i)

∑∞
n=0 x

n = 1/(1 − x) for |x| < 1; ii)∑∞
n=0 nx

n = x/(1− x)2 for |x| < 1.

a) The first step is to write down the transition matrix W for this system, corresponding to the
graph above. As in Problem 1, the true matrix is infinite-dimensional, so you only need to write
down a small portion of it to see the overall pattern. To keep the notation simple, you can intro-
duce a new variable ε ≡ 1− r− g. This is useful for the diagonal entries, and corresponds to the
probability that you stay in your current state at each time step.

b) Now let us consider all trajectories that involve infecting exactly m people. These trajectories
start at state 2 (k = 0) and reach state m+ 2 (k = m), but no higher, before returning to state 1.
We know that in general the probability of observing a trajectory of states ν = (n0, n1, . . . , nτ )
is given by P (ν) = Wnτnτ−1 · · ·Wn1n0pn0(t0). In our case all the trajectories start at n0 = 2,
so pn0(t0) = δn0,2 is just a Kronecker delta function at n0 = 2. We know that the final state
nτ = 1. But there are a large number of possible trajectories, with different lengths τ , that have
these initial and final points and reach state m + 2. Imagine a trajectory ν in of this type with
the following properties: you spend a2 time steps in state 2 before transitioning to state 3; you
spend a3 time steps in state 3 before transitioning to state 4, and so on; finally, you spend am+2

time steps in state m+ 2 before transitioning to state 1. The probability to stay in a state in each
time step is ε, the probability to transition to the next higher state is g, the probability to go from
state m + 2 to 1 is r. Hence multiplying all these transition probabilities together, you get the
following probability for the whole trajectory:

P(ν) = εa2gεa3g · · · εam+1gεam+2r. (1)

Let us callP(m) the probability to infect exactlym people. This is just the sum over all trajectories
ν of the kind shown in Eq. (8), for all possible values of a2, a3, . . ., am+2:

P(m) =
∞∑

a2=0

∞∑
a3=0

· · ·
∞∑

am+2=0

P(ν). (2)

Evaluate this sum, and show that

P(m) =
rgm

(r + g)m+1
. (3)

Hint: Do not forget the distributive property of sums, and take advantage of the sum identities
mentioned above.
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c) With the result of Eq. (10), calculating R0 is now just a matter of evaluating the average of m
over all possible types of trajectories,

R0 =
∞∑

m=0

mP(m). (4)

Show thatR0 = g/r. Hint: manipulate the sum expression, factoring out certain terms, until you
can apply one of the sum identities.

d) To calculate τ̄ , note that τ̄ = h12, the hitting time h12 starting from state 2 and ending in state
1. In class we derived a set of equations for the hitting times hji:

hji = 1 +
∑
n6=j

hjnWni. (5)

By plugging in the transition probabilities from part a, use Eq. (5) to write down a set of equations
for h12, h13, h14, and so on. You should find that h12 depends on h13, h13 depends on h14, etc. If
you solve for h12, and then plug in the h13 solution, and then plug in the h14 solution, etc., show
that you get an infinite series of the form:

h12 =
1

r + g

[
1 +

g

r + g
+

(
g

r + g

)2

+

(
g

r + g

)3

+ · · ·

]
. (6)

Evaluate the sum in the brackets, and show that the final expression you get is h12 = 1/r.
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Problem 3: Master equation under periodic driving

So far in class we have focused on time-independent transitionmatricesW , which correspond
to systems where the environmental parameters are fixed. In this case the master equation is
given by

p(t+ δt) = Wp(t). (7)

Iterating this equation, for example over m time steps, we get

p(t+mδt) = Wmp(t). (8)

Assuming an ergodic and mixing system, as m → ∞ the probability distribution converges to a
stationary state, limm→∞ p(t+mδt) = ps, where ps is a time-independent vector.

But what happens if the environmental parameters are not fixed, so that the transition matrix
probabilities change at every time step? Incorporating this into the master equation framework
is straightforward: the transition probabilities Wij between states j and i in the system become
time-dependent functions Wij(t), which could for example reflect some protocol of parameter
changes controlled by the experimentalist. Note that at each instant in time the probabilities
of each transition out of j over the interval δt have to still sum to one,

∑
iWij(t) = 1. The

corresponding master equation becomes

p(t+ δt) = W (t)p(t). (9)

For arbitrary transition probabilitiesWij(t), this master equation is not easy to manipulate, but in
this problem we will be interested in a specific class of external stimulus which has the form of a
cycle: in other words,Wij(t) is periodic,Wij(t+T ) = Wij(t), with some period T = τδt, where
τ > 0 is an integer. We will show that an ergodic system under these circumstances will go to a
periodic state in the long-time limit: limm→∞ p(t+mδt) = pps(t+mδt), where ppsn (t+T ) = ppsn (t)
for any n. The nonequilibrium behavior of periodically driven systems is currently a very active
research area in condensed matter, falling under the broader mathematical framework of Floquet
theory. Interest in this topic was stimulated in particular by the suggestion by Frank Wilczek
in 2012 that in certain quantum and classical systems, you can drive with period T and get the
system to be periodic with a period different than the driving, for example 2T . Wilczek colorfully
named this phenomenon a time crystal. Unfortunately in our case we will show that a Markovian,
ergodic system under periodic driving is not an exotic time crystal: the periodic state has the same
period T as the the driving. But the fact that we are guaranteed to eventually reach this periodic
state is still an interesting result, which we will exploit in the next problem set.

a) Let us first focus on times t that are integer multiples of the period, t = jT for j = 0, 1, 2, . . ..
By iterating Eq. (9) and using the periodicity W (t + T ) = W (t), show that p(jT + T ) can be
related to p(jT ) as:

p(jT + T ) = Ŵp(jT ), (10)

where Ŵ is a matrix independent of j. Find Ŵ in terms of products of the W (t) matrices, and
show that Ŵ has the standard property of a transition matrix, namely

∑
m Ŵmn = 1.

Note that Eq. (10) has the same form as Eq. (7), with t = jT , δt replaced by T andW replaced
by Ŵ . Thus it describes time evolution of the probability p over time intervals equal to T . We

6



will assume Ŵ corresponds to an ergodic network, so that as t → ∞ (or equivalently j → ∞)
the probability p(jT ) → v, where v is some time-independent vector.

b)The final step is to find p(t) for some time t that is an integer multiple of δt, but not necessarily
an integer multiple of T . In other words, t = kδt+ bt/T cT , for some k. Here bxc is the floor of
x (the largest integer smaller or equal to x), and hence bt/T cT is just the largest multiple of T
less than t. The remainder is kδt = t − bt/T cT ≡ t mod T . Using Eqs. (9) and (10), show that
you can write:

p(t) = A(t mod T )p (bt/T cT ) , (11)

where A(t mod T ) is a matrix depending on t mod T . Find an expression for A(t mod T ), and
argue that as t → ∞, the probability becomes periodic in T , namely p(t + T ) = p(t). Thus we
have shown that the system must go to a periodic state at long times.
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