
PHYS 414 Problem Set 4:
Fluctuation theorems, Maxwellian demonology

Problem 1

folded state unfolded state

Figure 1: Two possible states of a
biomolecular system in an AFM appa-
ratus with a given extension x, and the
corresponding state energies En(x).

The goal of this problem is to directly verify the integral
fluctuation theorem through a computational experi-
ment: simulating an atomic force microscope (AFM) ap-
paratus pulling on a biomolecule. The simulation will be
a simplified version of a landmark experiment [Liphardt
et. al., Science 296, 1832 (2002)] from the Carlos Bus-
tamante group at Berkeley. The experiment used opti-
cal tweezers (rather than AFM) to pull on single RNA
molecules, but the underlying principle is the same. The
significance of the 2002 experiment was such that it was
cited as part of the justification for awarding half of the
2018 Nobel Prize in Physics to Arthur Ashkin, inventor
of optical tweezers.

The model consists of a protein molecule (red) in solution attached to the AFM tip and the surface
of a stage by polymer handles (green), as shown in Fig. 1. There is nothing special about using
biomolecules (like proteins or RNA) in this setup, since the thermodynamic relations hold for
any system. However the original experiments used RNA because it was a well characterized
molecule with known states. In our case the system (protein + handles) has N = 2 states: state
1 is where the protein is folded, and state 2 is where it becomes unfolded.

The entire protein-handle system can be roughly approximated as an elastic spring of total ex-
tension x with spring constant k1 (in the case where the protein is folded) or k2 (if the protein is
unfolded). Since the folded structure is more rigid than the unfolded one, k1 > k2. There is one
additional energy contribution besides the spring potential: folding lowers the protein energy by
an amount ε > 0, which makes the folded state more favorable at small extensions. The resulting
energies of state 1 (folded) and state 2 (unfolded) are:

E1(x) =
1

2
k1x

2 − ε, E2(x) =
1

2
k2x

2. (1)

The transition rates between the two states,W12(x) (from 2 to 1) andW21(x) (from 1 to 2), satisfy
local detailed balance, W21(x)/W12(x) = e−β(E2(x)−E1(x)), where β = 1/kBT . Hence we will
write them in the form:

W12(x) = ωeβE2(x), W21(x) = ωeβE1(x), (2)

with a prefactor ω. This form guarantees that they satisfy the local detail balanced relation. Note
that both the state energies and rates depend on the parameter x that can be controlled by the
experimentalist. In the first part of the problem we will keep x constant, but later change it over
time.
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The parameters we will use for the simulations are as follows:

k1 = 0.05 kBT/nm2, k2 = 0.01 kBT/nm2, ε = 80 kBT, ω = 5× 10−10, δt = 1 s. (3)

Note that all energies will be measured in units of kBT , all extensions in units of nm, spring
constants in units of kBT /nm2, and the time step δt in units of seconds. If you stay within this
unit scheme, you can use the raw numerical values above (like 0.05, 0.01, or 80) in your code
without doing any kind of unit conversions.
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Figure 2: State energies En(x) versus
extension x.

The experiment is highly sensitive to the value of the
extension x. Fig. 2 shows a plot of E1(x) and E2(x)
given the parameters above, for a range of x between
62.5 and 63.5 nm. At x = 63.25 nm the two curves
cross. Below that value state 1 has lower energy (and
hence the system has a greater likelihood of being folded
than unfolded in equilibrium), and above that value
state 2 has lower energy (so the unfolded state domi-
nates in equilibrium). If we keep x constant, the sys-
tem should eventually equilibrate, and we should find
in the long run that the probabilities of the two states
are described by the Boltzmann distribution, psn(x) =
exp(−βEn(x))/Z(x), for n = 1, 2, where Z(x) =
exp(−βE1(x)) + exp(−βE2(x)) is the partition function. Note that since the energies depend
on x, the probabilities and partition function also depend on x.

Part A: Approaching equilibrium

The first step of the computational experiment will be to let the system equilibrate for τ = 50
time steps at a fixed value of extension x0 = 62 nm.

a) Before we do any numerics, let us first determine theoretically what we expect to happen.
Since this is a system with fixed external parameters, doing no work, and simply exchanging
energy with the environment at temperature T , we have a clear expectation for the behavior as
t → ∞. The state probabilities should approach the Boltzmann distribution, and the Helmholtz
free energy F (t) = E(t) − TS(t) should approach its equilibrium minimum F eq. Calculate the
following quantities in the t → ∞ limit, plugging in the parameters above to get numerical
values: i) the state probabilities p1(t) and p2(t); ii) the mean energy E(t), in units of kBT ; iii) the
entropy S(t), in units of kB ; iv) the Helmholtz free energy F (t), in units of kBT .

b) Now let us check numerically if these expectations are fulfilled. We need to develop code
that will calculate an ensemble of trajectories for the system. Each trajectory will be of the form
ν = (n0, n1, . . . , nτ ), where ni is the state of the system at the ith time step. To get good statistics,
we will need a fairly large ensemble, something like 104 trajectories or more. The rough idea of
how to generate one trajectory is as follows:

1. Our initial distribution p(t0) will have states 1 and 2 equally distributed, p1(t0) = 1/2,
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p2(t0) = 1/2. Hence pick the first state n0 in the trajectory as either 1 or 2 with equal
probability.

2. For each of the τ time steps, carry out the following procedure, which depends on the
value of the current state. For example, let us say we are at time step i and the current
state is ni = 1. The probability that state ni+1 = 2 is just W21(x). Hence draw a uniform
random real number r between 0 and 1, and if r < W21(x) then set ni+1 = 2. Otherwise
set ni+1 = 1. The procedure is analogous if ni = 2, except we would use the probability
W12(x) to decide whether the next state is 1.

3. After you have completed a full trajectory ν = (n0, . . . , nτ ), save it as a row in an array,
and move on to the next trajectory. Repeat step 1 and 2 above for each trajectory, until
you have completed the array. This is your ensemble of trajectories, which you will use for
subsequent analysis.

c) Using the ensemble from part b, calculate the state 1 probability p1(ti) at each time step i, and
plot it. Recall that p1(ti) is the fraction of trajectories in the ensemble where ni = 1. Check from
the plot that p1(ti) approaches the expected limiting value for large times that you calculated
from part a.

d) Using the ensemble from part b, and the state probabilities from part c, calculate the mean
energy E(ti), entropy S(ti) and free energy F (ti) at each time step, and plot them. Check that
they approach the corresponding limits determined in part a.

e) Now let us verify the integral fluctuation theorem for this portion of the experiment. For each
trajectory ν in the ensemble from part b, calculate the irreversibility I(ν). Recall that in the case
of no work coupling, this is given by

I(ν) = −kB (ln pnτ (tτ )− ln pn0(t0))−
1

T
(Enτ (x0)− En0(x0)) , (4)

and has units of kB . If you average the irreversibility over all the trajectories, verify that you get
the second law relation derived in class

〈I(ν)〉 = − 1

T
(F (tτ )− F (t0)), (5)

where you know the free energy difference on the right-hand side from the results of part d. Note
that 〈I(ν)〉 should be non-negative to satisfy the second law of thermodynamics. Finally calculate
exp(−I(ν)/kB) for each trajectory ν, and average them to determine 〈exp(−I(ν)/kB)〉. Assum-
ing you used a sufficiently large number (> 104) of trajectories, you should find this number
magically equals 1, up to a small statistical error (� 0.01 discrepancy) due to the fact that the en-
semble is finite. If successful, you have just verified the integral fluctuation theorem! If not, you
have just violated a fundamental law of nature: probably time to debug the code. Plot a histogram
of the exp(−I(ν)/kB) values in the ensemble, and observe that there are just enough “entropy
destroying” trajectories (where I(ν) < 0 and and hence exp(−I(ν)/kB) < 1) to counterbalance
the “entropy producing” trajectories (where I(ν) > 0 and and hence exp(−I(ν)/kB) > 1) in
order for the whole ensemble to have mean 1.
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Part B: Driving the system out of equilibrium

Now let us modify the code from part b to incorporate the full experiment. The basic structure
will be the same, but now our trajectories will be longer, with three periods. The first τ = 50
time steps will be exactly as before: letting the system equilibrate at constant x0 = 62 nm. The
second period will last σ = 10 time steps, and during this period will will increase the extension
x(t) from x0 to xf = 63.5 nm at a constant rate. In other words, x(tτ+j) = x0 + j(xf − x0)/σ,
for j = 1, . . . , σ. In this middle period we drive the system out of equilibrium. Remember to
change your transition probabilitiesW12(x(ti)) andW21(x(ti)) as the extension changes. During
the final period, which lasts τ = 50 time steps, the extension is kept constant at the value xf ,
allowing the system to reach equilibrium again, but now with a different external parameter.
Thus each trajectory ν will consist of a sequence of 2τ + σ states, ν = (n0, n1, . . . , n2τ+σ).

In addition to calculating each trajectory ν, we also want the code to keep track of the total work
W (ν) associated with each trajectory. Experimentally this is a quantity that can be measured
directly, since the AFM measures the force applied to the molecule at each extension. Hence for
every run, we get W (ν) by integrating the force vs. extension (distance) curve. For our simula-
tion, we can use the expression forW (ν) derived in class. There is no explicit work coupling ωnm

in our case, but we do have a contribution to work during the middle period when we vary the
extension. If the system is in state ni at time ti, and we have changed the extension from x(ti−1)
to x(ti), then we do work Eni

(x(ti))−Eni
(x(ti−1)) on the system. The work done by the system

is just the negative of this, and the sum of each such contribution over the whole trajectory is
just:

W (ν) = −
τ+σ∑

i=τ+1

[Eni
(x(ti))− Eni

(x(ti−1))] . (6)

Note that the sum only includes the time steps during the middle period of the trajectory, where
we actually have work done on the system. For the purposes of the simulation, it is easiest to
keep track of each contribution to the sum as we generate the trajectory state by state, and then
save the total W (ν) as an element in an array.

f) As derived in class, one of the consequences of the integral fluctuation theorem (for the special
case where you equilibrate, drive, and then equilibrate again) is the Jarzynski equality. This states
that

〈eβW (ν)〉 = e−β∆F eq
, (7)

where β = (kBT )
−1. Verify the Jarzynski equality (up to small statistical error) by numerically

calculating both sides of the above equation using the modified code described above. Note the
equilibrium free energy difference ∆F eq on the right-hand side is the difference between the
final and initial equilibrium free energies. The final one is just F (t2τ+σ), after the system has
equilibrated at xf , and the initial one is F (tτ ), after the system has equilibrated at x0. Hence
∆F eq ≈ F (t2τ+σ) − F (tτ ). You can calculate these free energies similarly to the way you did it
in part d. Alternatively you can calculate ∆F eq using the analytical expressions from part a.

g) Redo part f, but using a different σ, for example σ = 20. This corresponds to changing the
extension at a different pulling velocity. Check that both sides of the Jarzynski equality stay the
same as in part f. It is valid no matter how fast or slow we pull. In fact the Jarzynski equality
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allows us to pull arbitrarily fast, and use the experimentally measured work distribution to find
out information about the equilibrium properties of the system (the equilibrium free energies).
The 2002 Liphardt et. al. paperwas the first experimental verification of this fundamental relation.

Introduction to Problems 2 and 3:
Demonic refrigerators and eternal sunshine

In a famous thought experiment discussing the second law of thermodynamics, James Clerk
Maxwell imagined an intelligent being (a “demon”) standing guard at a door in an insulated
wall between two large, enclosed volumes (H and C) filled with gases at different temperatures
(Th > Tc). Because of the temperature difference, the mean speeds of particles in H are faster than
those in C. This is because in a chamber at temperature T , the velocities v of the individual par-
ticles are distributed according to the Boltzmann distribution p(v) ∝ exp(−E(v)/(kBT )), where
E(v) = (1/2)mv2 and m is the mass of the gas particle. Hence higher T favors the chances of
finding larger v. The door remains closed, with two exceptions: (i) Whenever the demon observes
a particle in C moving toward the door with a speed faster than the average speed of particles
in H, he opens the door to allow the particle to pass into H. Such fast particles in C may be rare,
but from the Boltzmann distribution we know that all velocities are possible, just with different
probabilities. (ii) Similarly whenever the demon observes a particle in H moving toward the door
with a speed slower than than average speed in C, he allows it pass through to C. We assume the
door is essentially massless and can be slid frictionlessly, so that opening and closing the door
requires no work on the part of the demon. Over time, the particles in C get slower on average,
and those in H get faster, which is equivalent to cooling C and heating up H. In Maxwell’s words,
the net result is “the hot system has got hotter and the cold colder and yet no work has been done,
only the intelligence of a very observant and neat-fingered being has been employed”.

In other wordswe have a demonic refrigerator, moving heat from a cold to a hot reservoir, without
seeming to expend any work. The challenge in describing this scenario thermodynamically is to
consider all the components, including the demon itself. In the terminology of our course, the
demon is a system coupled to two heat baths (or reservoirs) at temperatures Th and Tc. Over
some interval of interest τ , the demon does no work, so W = 0. Similarly the demon does not
change its internal energy during the process, so ∆E = 0. From lecture, the first and second
laws in the case of two temperature reservoirs look like:

Qc +Qh = ∆E +W

I = ∆S − Qc

Tc

− Qh

Th

≥ 0
(8)

We assume that the time interval τ is short enough (and the reservoirs big enough) that the
temperatures Th and Tc have not changed substantially during the process. Of course we know
in the very long run they will gradually shift. I is the mean irreversibility, which we know must
always satisfy I ≥ 0. ∆S is the change in entropy, and Qi is the heat extracted from the ith
reservoir. Since ∆E = W = 0, we know that Qc = −Qh from the first law. Since heat is leaving
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the cold reservoir, Qc > 0. Thus

−Qc

Tc

− Qh

Th

= −Qc

(
1

Tc

− 1

Th

)
< 0. (9)

In order to satisfy the second line in Eq. (8), we thus must have ∆S > 0. The system (demon)
entropy must increase. But where is this increase of demonic entropy manifested? One idea is
that the entropy increase occurs in the demon’s brain, through a recording of a “memory” of each
door opening event. What is the relationship between recording information and thermodynamic
entropy? If the demon’s mind is finite, what are the thermodynamics of eventually erasing that
information, to make room for more events?

With the advent of nanotechnology, and experimental analogues toMaxwell’s demon [1, 2], these
issues have become more than merely philosophical puzzles. Perhaps the most elegant way of
understanding this problem is through an exactly solvable model published in 2013 by D. Mandal,
H.T. Quan, and C. Jarzynski [3], which we will explore in the next two problems.

Problem 2: The demonic refrigerator

Figure 3: A model for Maxwell’s demon, adapted from Ref. [3].

The model (Fig. 1) consists of two thermal reservoirs, at temperatures Th and Tc, with Th > Tc.
The demon is a simple two-state system, with states denoted by u and d having corresponding
energies Eu > Ed. In addition, there is a tape consisting of a sequence of bits (0 or 1) which
slides frictionlessly past the demon. As will become clear, this will play the role of the demon’s
“memory”. The demon can interact with the two heat reservoirs and the bit on the tape which is
nearest to it. The tape moves at constant velocity v, and the bits are spaced at intervals of length
l, so it has a finite time τ = l/v during which it can interact with a given bit, before the next
bit comes along. In the simplest version of the model, which is what we will consider here, all
the bits on the tape are initially 0 before reaching the demon. The demon can change the state
of the nearest bit, according to rules which we will lay out below. Once a bit leaves the demon
interaction zone, it is permanently fixed in the state which it attained at the end of the interaction
interval.

The demon has two types of transitions, mediated by the two different reservoirs:
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i) Intrinsic ones that occur regardless of the state of the nearest bit, and leave the bit unchanged.
These involve the demon exchanging energy with the hot reservoir. Let us call the intrinsic
transition probabilities x (demon going from d to u) and y (demon going from u to d). These
are probabilities of the transition occurring over some microscopic time interval δt � τ . The
probabilities satisfy detailed balance with the hot reservoir,

x

y
= e−βhε (10)

where βh = (kBTh)
−1 and ε = Eu − Ed > 0.

ii) Cooperative ones that simultaneously change both the states of the demon and the bit. These
involve exchanging energy with the cold reservoir. During the interaction interval two such
transitions can occur: if the demon is in state d and the bit is 0, they can both flip, yielding states
u and 1, with a probabilityw per time step δt. Or, conversely, if they are in states u and 1 they can
both flip to give d and 0, with a probability z per time step δt. These probabilities satisfy detailed
balance with the cold reservoir,

w

z
= e−βcε (11)

where βc = (kBTc)
−1. We assume that the two states of each bit have the same energy, so

ε = Eu − Ed comes just from the demon switching states, as above.

Note that every cooperative transition described by w extracts energy ε from the cold reservoir,
and every transition described by z deposits energy ε into the cold reservoir. Imagine an inter-
action interval for a given bit which starts at time t = 0 and ends at time t = τ . Since the bit
is initially in state 0, if it is also 0 at time τ , this means that the number of w transitions was
exactly equal to the number of z transitions during that time interval, and the total energy ex-
changed with the cold reservoir is zero. However if the bit is in state 1 at time τ , the number
of w transitions was one more than the number of z transitions. Hence there is a net energy ε
extracted from the cold reservoir, and a record of this event has been imprinted permanently in
the demon’s “memory”. Where does this energy go eventually? Well, the demon does not have
the capacity to store more than ε of energy, but it does exchange energy with the hot reservoir,
described by the intrinsic transitions x and y. Since the end result of an interaction with a bit is
either extraction of energy from the cold reservoir or no energy taken from the cold reservoir,
over the course of many interactions there must be a net flow of energy from the cold to the hot
reservoir. Thus the system should behave like a demonic refrigerator. For simplicity, we assume
that the reservoirs are arbitrarily large, so this movement of energy does not appreciably change
the temperatures Th and Tc on the time scales of interest. (Though if the demon were allowed to
operate indefinitely, Th would increase and Tc would decrease.)

To make these ideas concrete, we will work out the statistical physics of the system:

a) Initially, let us focus on a single interaction interval between a demon and a certain bit, occur-
ring between times t = 0 and τ . Let us call the joint probability of the demon and bit as pij(t),
where i = u or d denotes the state of the demon, and j = 0 or 1 denotes the state of the bit.
Thus there are four possible states, ij = u0, d0, u1, d1. Write down the 4×4 transition matrixW
for this system. Note this matrix has elements Wij,i′j′ . Each off-diagonal element Wij,i′j′ where
ij 6= i′j′ is just the transition rate from state i′j′ to ij. The diagonal elements Wij,ij are found by
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demanding that the columns ofW each sum to 1. This is the same as theW matrix familiar from
class, except that the integer state labels n have been replaced by the integer pair labels ij.

b) If the interaction time τ is made very long (longer than the equilibration times of the demon-
bit system) the system relaxes to a stationary probability psij by the end of the interval. Using
the result of part a, find this probability (make sure you properly normalize it). Also find the
marginal stationary probabilities of the demon by itself and the bit by itself, defined as:

pDs
i =

∑
j=0,1

psij, pBs
j =

∑
i=u,d

psij. (12)

If you do the calculation correctly, you should find that psij factorizes as: psij = pDs
i pBs

j . Recom-
mendation: You know the stationary probability is the right eigenvector of the 4 × 4 matrix W
from part a) with eigenvalue 1. From the elements of this four component eigenvector you can
then read off the stationary probabilities, ps = (psu0, p

s
d0, p

s
u1, p

s
d1). You can get cleaner expres-

sions by introducing the constants µ ≡ y/x = eβhε and α ≡ wy/(xz) = e(βh−βc)ε. Note that
µ > 1 and 0 < α < 1 since 0 < βh < βc and ε > 0.

From now on we will assume τ is long enough that full relaxation can occur, pij(τ) ≈ psij =
pDs
i pBs

j . This fully specifies the joint probability at the end of the interaction interval, t = τ . We
can also infer the joint probability at the beginning, t = 0. Since the demon already achieved
the stationary distribution pDs

i during the interaction interval prior to time t = 0, we can assume
that at t = 0 it starts with distribution pDi (0) = pDs

i . At t = 0 a new bit appears on the tape,
with a state 0 that is independent of the demon, pBj (0) = δj0. Because the demon and bit are
uncorrelated at t = 0, we can write pij(0) = pDi (0)p

B
j (0), fully specifying the probability at

the beginning of the interaction interval. Of course in-between during the relaxation of the
system themarginal demon probability pDi (t) can deviate from the stationary distribution because
of interactions with the bit, but it turns out that we do not need to calculate these deviations:
knowing the beginning and end states is sufficient for our purposes. This greatly simplifies the
calculation, because solving the full master equation for pij(t) over time becomes unnecessary.

c) The entropy of the full system S(t), as well as the marginal entropies of the demon (SD(t))
and bit (SB(t)) are defined as:

S(t) = −kB
∑

ij=u0,d0,u1,d1

pij(t) ln pij(t),

SD(t) = −kB
∑
i=u,d

pDi (t) ln p
D
i (t),

SB(t) = −kB
∑
j=0,1

pBj (t) ln p
B
j (t).

(13)

Here the demon and bitmarginal probabilities are pDi (t) =
∑

j=0,1 pij(t) and p
B
j (t) =

∑
i=u,d pij(t).

Let∆S = S(τ)−S(0) be the total system entropy change over the interaction interval, and anal-
ogously define ∆SD = SD(τ) − SD(0) and ∆SB = SB(τ) − SB(0). Prove that in our case the
entropy changes are additive:

∆S = ∆SD +∆SB. (14)
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Moreover, show that the demon and bit entropy changes are

∆SD ≡ SD(τ)− SD(0) = 0

∆SB ≡ SB(τ)− SB(0) = kB

[
ln(1 + α)− α lnα

1 + α

] (15)

Verify that ∆SB satisfies that bounds 0 < ∆SB < kB ln 2.

We can interpret∆SB in terms of information entropy, a concept introduced by Claude Shannon:
this is simply defined as thermodynamic entropy divided by kB ln 2, and measured in units of bits.
Thus kB ln 2 of thermodynamic entropy is equivalent to 1 bit of information entropy. Please note
the potentially confusing use of bits both to describe the physical objects on the tape, and as a
unit of information entropy. If we consider the physical bits on the tape before the demon, each
of them has zero information entropy (all the prior bits are in the same state 0). If we look at the
physical bits on the tape after the demon, each of them has gained 0 < ∆SB/(kB ln 2) < 1 bits
of information entropy. This corresponds to the fact that if we had an ensemble of such systems,
the pre-demon tape would be identical for each system in the ensemble (all 0’s, perfect certainty
about the ensemble, zero entropy), while the post-demon tape would be different in each system
(some 1’s mixed with 0’s, less certainty about the ensemble, entropy greater than zero).

d) The energy of the demon at time t just depends on the demon state i = u, d rather than the
state of the tape, so the mean system energy is

E(t) =
∑
i=u,d

pDi (t)Ei. (16)

Argue that ∆E = E(τ)− E(0) = 0.

e) Plug in the results of parts c) and d) into the first and second laws in Eq. (8), keeping in mind
W = 0. Show that

I = ∆SB −Qc

(
1

Tc

− 1

Th

)
. (17)

f) On the right-hand side of Eq. (17), we know ∆SB from part c), but what is Qc? Find an
expression for Qc in terms of ε and α. Hint: we know Qc is the average heat extracted from the
cold reservoir during the interval τ . From the argument in the introduction, we know that if the
bit is in state 1 at t = τ , this indicates a net energy ε was extracted from the cold reservoir; if it is
in state 0 at t = τ , no net energy was extracted. Since we know that probabilities of the bit being
in each state at t = τ from part b), we can calculate the mean amount of energy Qc extracted.

g) Using the result of part f) and the expression for ∆SB from part c), write down an explicit
expression for I in Eq. (17). After simplifying, you should find I = kB ln(1 + α). This satisfies
I > 0, since 0 < α < 1. Hint: use the definition of α to write 1/Tc − 1/Th in terms of α, ε, and
kB .

Postscript: It is instructive to compare Eq. (17) to the analogous result we would get from an
ordinary refrigerator. For a conventional refrigeration cycle we return the system to its original
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state (there is no “memory” tape) and hence ∆S = 0. On the other hand W < 0, since we do
work on the system (plug the refrigerator into an outlet). Hence Eq. (8) can be rewritten as

I = −W

Th

−Qc

(
1

Tc

− 1

Th

)
≥ 0. (18)

In our Maxwell demon case, the role of −W/Th is played by ∆SB , since there is no external
source of work. The high certainty (low information entropy) about the state of the tape entering
the demon is effectively like an information reservoir powering the demonic refrigerator, doing
the “work” required to move energy from the cold to the hot reservoir. The tape that comes out
of the demon is depleted (has greater uncertainty, higher information entropy). Thus the demon
literally enacts Sir Francis Bacon’s “ipsa scientia potestas est”: knowledge itself is power.

Problem 3: Eternal sunshine of the demonic mind
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Figure 4: Schematic of erasing a physical bit (returning it to state 0). In this case it starts at t = 0
in state 1.

The Maxwell demon from Problem 2 stores entropy in its memory register, but eventually the
universe must get its due: there is no infinite memory register, and if you eventually want to
loop the tape back into the demon to keep the process going, you need to pass the tape through
another device which erases it, restoring all the bits to 0. What are the thermodynamics of erasing
a physical bit?

Let us concentrate solely on one bit, which we can imagine has already passed through the de-
mon. Let us call the current time t = 0 (the beginning of the erasing procedure). In a hypothetical
ensemble of tapes, this physical bit has a probability distribution pj(0), and corresponding en-
tropy S(0) = −kB

∑
j pj(0) ln pj(0). For simplicity, we drop the B superscripts to refer to the

entropy of the bit, since the only system we are considering here is the bit. S(0) is the entropy
stored in the bit by the demon, so its value is equal to ∆SB from the previous problem. For our
purposes, all that really matters is that 0 < S(0) < kB ln 2.

We need a basic physical description of the bit: let us model it as two deep energy wells in the
space of some degree of freedom (for example particle spin or position). The wells correspond
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to states 0 and 1, and the energy barrier between the wells is so large compared to kBT that
spontaneous flipping between the wells is negligible (left panel of Fig. 2). Thus if the system is in
a particular state, and we do not disturb it, it should remain there for arbitrarily long times (for a
solid state bit in a hard drive, possibly hundreds of years).

To erase the bit (return it to state 0), we can carry out a procedure as follows: the bit is coupled
to a single thermal reservoir at temperature T . (Remember that the erasing device is completely
different than the demon.) At t ≥ 0, we perform an erasing protocol on the system, which
involves changing the system energy levelE1(t) over time, making it a time-dependent function.
There are two possible scenarios: a) the system was in state 1 at t = 0, so p1(0) = 1. Eventually,
if E1(t) reaches a level comparable to or higher than the barrier energy, the system will (with
extremely high probability) spontaneously switch due to thermal fluctuations into state 0. The
high uphill energy slope in the reverse direction prevents it from switching back. In the second
part of our process, we lower E1(t) back to its original level, which we reach at t = τe, the end
of the erasure period. Hence E1(0) = E1(τe) and p0(τe) = 1. During this process E0(t) stays
constant. b) If the system happened to be in state 0 at t = 0, it would do nothing during the
same E1(t) protocol, staying in state 0. The end result is the same: we have a bit in state 0, so
p0(τe) = 1.

a)What are∆E = E(τe)−E(0) and∆S = S(τe)−S(0) for the erasure protocol? You can leave
the expression for ∆S in terms of S(0).

b) Using the first and second laws for a system connected to a single temperature reservoir T ,
prove that Q = W ≤ −TS(0) for the erasure protocol, where Q is the heat extracted from the
environment, and W is the work done by the system. Since S(0) > 0, this means heat must be
dumped into the environment during erasure (Q < 0), and we have to do work on the system to
erase the bit (W < 0).

Thus if we had 1 bit of information entropy, S(0) = kB ln 2, it would require doing at least
kBT ln 2 of work to erase it, leading to at least kBT ln 2 of heat dumped into the reservoir (in-
creasing the entropy of the universe). This fundamental bound on the work required to erase a
physical bit was first pointed out by Rolf Landauer in 1961, and since then has been dubbed the
Landauer principle [4]. By being forced to erase the bit, you contribute to the entropy increase of
the universe, so ultimately even our intelligent demon cannot evade the slow creep toward heat
death.
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