
PHYS 414 Problem Set 5:
Quantum Jarzynski equality and decoherence

Problem 1: Quantum Jarzynski equality
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In a recent experimental breakthrough, Kihwan Kim and collaborators were able to directly mea-
sure the work required to drive a quantum system (a 171Yb+ ion trapped in a harmonic potential)
between two different equilibrium states [An et al., Nature Physics 11, 193 (2015)]. For the first
time, researchers could directly study fundamental thermodynamic relationships between work
and free energy at the quantum scale.

The experimental protocol, illustrated above, is as follows:

1. At t = 0, we have a quantum system with Hamiltonian H at thermal equilibrium with
temperature T . Let us denote the eigenstates of H by |n〉, with n = 0, 1, 2, . . ., and the
corresponding eigenvalues En. The system remains in equilibrium until t = t1.

2. At t = t1 the experimentalist performs an energy measurement on the system, and the
result is En for some n.

3. For t1 < t < t2, the system is thermally isolated, so it cannot exchange heat with its
environment. The experimentalist now varies the Hamiltonian in some time-dependent
manner. The net result is that the system evolves during this period according to a unitary
operator U , satisfying U †U = UU † = I . In other words, if |ψ(t1)〉 was the state of the
system at time t1, then |ψ(t2)〉 = U|ψ(t1)〉. At t = t2, at the end of this driving process,
the system has a new Hamiltonian, H̃, with eigenstates |m̃〉 and energies Ẽm.

4. At t = t2 the experimentalist again performs an energy measurement, and the result is Ẽm

for somem. We defineW = Ẽm−En as the net amount of work done on the system. Note
thatW can be positive or negative.

5. For t > t2, the system continues to have Hamiltonian H̃. It is coupled back to the environ-
ment, and allowed to reach equilibrium at the same temperature T as before. At the final
time t = tf it is again in thermal equilibrium.
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Note that every time the experiment is run, it will potentially record a different value of W ,
since the measured energies En and Ẽm in steps 2 and 4 may be different. Thus if you redo the
experiment many times, you can construct a probability distribution of work values P (W ). On
the other hand, the difference in Helmholtz free energies,∆F = Ff−F0, between the equilibrium
states at t = tf and t = 0, is always the same for every run. In classical thermodynamics for
macroscopic systems, the second law implies that W ≥ ∆F . Let us see what happens in the
quantum case.

Useful theorem: Jensen’s inequality states that e〈x〉 ≤ 〈ex〉, where the 〈 〉 brackets denote an
average with respect to some probability distribution of x.

a)Write expressions for the partition functions Z0 and Zf of the system at the beginning and end
of the experiment (t = 0 and t = tf ). Assume Boltzmann thermal equilibrium.

b) Write an expression for the Helmholtz free energy difference ∆F = Ff − F0 in terms of Zf

and Z0?

c)What is the probabilityP (n) that in any given experimental run, youmeasure the energy value
En in step 2?

d) What is the transition probability P (m|n), defined as the probability of finding Ẽm in step 4,
assuming the result of step 2 was En?

The work distribution P (W ) can now be written as:

P (W ) =
∑
m,n

δ(W − Ẽm + En)P (m|n)P (n)

The Dirac delta enforces the fact that the only allowed values for W correspond to differences
between the energy levels of H̃ and H.

e) Calculate the average 〈exp(−βW )〉 =
∫∞
−∞ dW P (W ) exp(−βW ), where β = 1/kBT . Prove

the identity 〈exp(−βW )〉 = exp(−β∆F ).

This remarkable identity—known as the quantum Jarzynski equality—is valid for all possible ways
of driving the system in Step 3 (all possible unitary operators U ). It was first derived inde-
pendently by Hal Tasaki and Jorge Kurchan in 2000, three years after the same identity was
introduced by Christopher Jarzynski for classical systems. Experimental verification was only
achieved in 2015 with the Kim group ion trapping study.

f) Show that the identity in part e) implies the inequality 〈W 〉 ≥ ∆F . Thus the second law of
thermodynamics is valid in this quantum context, but defined in terms of the mean work 〈W 〉.

g)The result of part f) leaves open the possibility that for some experimental runs you might find
W < ∆F , a quantum “violation” of the second law, which can still be consistent with the overall
average 〈W 〉 ≥ ∆F . To see if this can happen, let us consider the simple case where bothH and
H̃ are two-level systems, with energiesE0,E1 = E0+µ forH, and Ẽ0 = E0+ν, Ẽ1 = E0+ν+µ
for H̃. Here µ and ν are constants, with µ > 0. In this two level case, the most general unitary
operator U can be written as a 2× 2 matrix with elements:

〈0̃|U|0〉 = aeiφ, 〈0̃|U|1〉 = beiφ, 〈1̃|U|0〉 = −b∗eiφ, 〈1̃|U|1〉 = a∗eiφ,
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where a and b are complex constants that satisfy |a|2 + |b|2 = 1, and φ is a real constant. Find
the probability that an experimental run will haveW < ∆F .

As you can see from this result, in general the probability can be non-zero! But before you run
off and try to build a perpetual motion machine, note that for large violations of the second law,
∆F −W � kBT , the probability that you will see such a violation vanishes exponentially. If
you want to get a (big) free lunch, be prepared to wait a while.

Problem 2: Decoherence for imperfect measurements
In class we discussed how a quantum measurement on a system can be seen as one specific
example of an interaction of a system with some external environment. Here we will generalize
that idea to “imperfect” measurements, where we imagine that our environment acts like an
error-prone measurement apparatus.

a) Let us imagine that at time twe have a qubit ensemble with some arbitrary density matrix ρ̂(t).
The matrix elements of this operator in the basis {|0〉, |1〉} are denoted as ρij(t) = 〈i|ρ̂(t)|j〉. Be-
tween time t and t+δt, the environment (apparatus) does ameasurement projecting the system on
the {|0〉, |1〉} basis. Imagine the measurement was a traditional, perfect quantum measurement:
if your apparatus output 0, the system state post-measurement would be |0〉, and if it output 1,
the system state post-measurement would be |1〉. For a perfect apparatus, what is the probability
of measuring 0, and what is the probability of measuring 1, in terms of ρij(t)?

b) An imperfect apparatus is defined as follows. For an initial density matrix ρ̂(t) it measures 0
with the same probability derived above, but it occasionally messes up the wavefunction collapse:
the system will be in the wrong state |1〉 post-measurement of 0 with small probability ε10, and
the correct state |0〉 with probability 1 − ε10. Analogously the apparatus measures 1 with the
same probability derived in part a, but results in the wrong system state |0〉 with probability ε01,
and the right state |1〉 with probability 1 − ε01. Write down the density matrix ρ̂(t + δt) post-
measurement. Hint: Remember post-measurement you are either in state |0〉 or |1〉. To find the
corresponding density matrix ρ̂(t + δt), you need to know what fraction of your ensemble is in
either state, given that you started pre-measurement with ρ̂(t).

c) Show that you can express your answer from part b in the form of a Kraus representation:

ρ̂(t+ δt) =
4∑

k=1

M̂kρ̂(t)M̂
†
k

Find the four Kraus operators M̂k, and verify that
∑

k M̂
†
kM̂k = Î , where Î is the identity.

d) By writing the equation for ρ̂(t + δt) explicitly in terms of matrix elements in the {|0〉, |1〉}
basis, and dividing by δt, show that you can rearrange the results to look like a classical master
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equation for the diagonal elements:

dρ00(t)

dt
= W01ρ11(tt)−W10ρ00(t)

dρ11(t)

dt
= W10ρ00(tt)−W01ρ11(t)

where dρii(t)/dt = (ρii(t + δt) − ρii(t))/δt. Find expressions for the transition rates Wij . Also
show that ρ01(t + δt) = ρ10(t + δt) = 0, and hence the off-diagonal elements of ρ̂(t) are sent to
zero after the imperfect measurement: a simple example of decoherence in action.
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