
RG Methods in Statistical Field Theory:
Problem Set 11 Solution

In this problem we will examine the phenomenon of Pauli paramagnetism arising from the
interaction between a magnetic field and the spins of electrons hopping on a lattice. The
derivation allows us to practice the contour integral technique for evaluating Matsubara
frequency sums.

Consider a Hamiltonian describing electrons hopping on a d-dimensional lattice:

H0 =
∑
ij

∑
σ

c†iσ(Kij − µδij)cjσ

The main difference from the noninteracting spinless fermion case discussed in class is that
here our creation/destruction operators have an extra index σ =↑, ↓ describing the spin of
the electron. The matrix components Kij have the property that they depend only on the
distance between lattice sites: Kij = K(|xi − xj|). To describe the interaction between the
electron spins and a magnetic field B along the +z direction, we add the following term:

HI = −1

2
µ0B

∑
i

(ni↑ − ni↓)

where µ0 = e~/2mc is the Bohr magneton and niσ = c†iσciσ is the number operator counting
the electrons with spin σ at site i. This interaction term is easy to interpret: if at a site i
we have an ↑ electron aligned with the magnetic field, the energy is decreased by 1

2
µ0B. If

we have a ↓ electron aligned opposite to the magnetic field, the energy is increased by the
same amount.

(a) To simplify the problem, let us transform to the momentum representation. As in class,
we substitute the Fourier expansions of the ciσ and c†iσ operators:

ciσ =
1

N

∑
q∈B.Z.

eiq·xicqσ c†iσ =
1

N

∑
q∈B.Z.

e−iq·xic†qσ

Here c†qσ and cqσ are creation/destruction operators for an electron with momentum q and
spin σ. Show that the full Hamiltonian can be written as:

H = H0 +HI =
1

N

∑
q, σ

c†qσ(Eq − µ− 1

2
µ0Bmσ)cqσ

where mσ = 1 and −1 for σ =↑ and ↓ respectively. The energies Eq are defined through the
eigenvalue equation for the K matrix:∑

j

Kije
iq·xj = Eqe

iq·xi
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Remember the orthonormality relation
∑

i e
i(q′−q)·xi = Nδq′,q.

Answer: Using the fact that

HI = −1

2
µ0B

∑
i

(ni↑ − ni↓) = −1

2
µ0B

∑
ij

∑
σ

mσδijc
†
iσciσ

we can write:

H =
∑
ij

∑
σ

c†iσ(Kij − µδij −
1

2
µ0Bmσδij)cjσ

=
1

N2

∑
q,q′

∑
ij

∑
σ

eiq
′·xj−iq·xic†qσ(Kij − µδij −

1

2
µ0Bmσδij)cq′σ

=
1

N2

∑
q,q′

∑
i

∑
σ

ei(q
′−q)·xic†qσ(Eq − µ− 1

2
µ0Bmσ)cq′σ

=
1

N

∑
q

∑
σ

c†qσ(Eq − µ− 1

2
µ0Bmσ)cqσ

(b) Let us now write the partition function as a functional path integral. For each operator
c†qσ and cqσ we introduce the Grassmann functions ψ̄qσ(τ) and ψqσ(τ). The partition function
Z is given by:

Z =

∫
eS
∏
q, σ

Dψ̄qσDψqσ

where the action S is:

S =

∫ β

0

dτ

(
− 1

N

∑
q, σ

ψ̄qσ(τ)
∂

∂τ
ψqσ(τ)−H[ψ̄, ψ]

)

Here H[ψ̄, ψ] is the Hamiltonian H with c†qσ replaced by ψ̄qσ(τ) and cqσ replaced by ψqσ(τ).
Transform to the Matsubara frequency representation and show that the action S becomes:

S =
β

N

∑
q, σ, n

ψ̄qσn(iωn − Eq + µ+
1

2
µ0Bmσ)ψqσn

Here ψ̄qσn and ψqσn are shorthand notation for ψ̄qσ(ωn) and ψqσ(ωn).

Answer: The Matsubara frequency representation is defined through:

ψ̄qσ(τ) =
∑
n

eiωnτ ψ̄qσn ψqσ(τ) =
∑
n

e−iωnτψqσn

Plugging these into the action S, we find:

S =

∫ β

0

dτ

(
− 1

N

∑
q, σ

ψ̄qσ(τ)
∂

∂τ
ψqσ(τ)−

1

N

∑
q,σ

ψ̄qσ(τ)(Eq − µ− 1

2
µ0Bmσ)ψqσ(τ)

)
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=
1

N

∑
q, σ

∑
n,m

∫ β

0

dτ ei(ωn−ωm)τ ψ̄qσn

(
iωm − Eq + µ+

1

2
µ0Bmσ

)
ψqσm

=
β

N

∑
q, σ,n

ψ̄qσn

(
iωn − Eq + µ+

1

2
µ0Bmσ

)
ψqσn

(c) The partition function Z =
∫
eS
∏

q, σ, n dψ̄qσn dψqσn is now easy to evaluate using Grass-
mann integration rules. You should find the following result for Z:

Z =
∏
q, n

β2

N2

(
(−iωn + Eq − µ)2 − 1

4
µ2

0B
2

)
Hint: Remember the Grassmann integral identity

∫
exp(aψ̄ψ) dψ̄ dψ = −a.

Answer:

Z =

∫
e

β
N

P
q, σ,n ψ̄qσn(iωn−Eq+µ+ 1

2
µ0Bmσ)ψqσn

∏
q, σ, n

dψ̄qσn dψqσn

=
∏

q, σ, n

∫
e

β
N
ψ̄qσn(iωn−Eq+µ+ 1

2
µ0Bmσ)ψqσndψ̄qσn dψqσn

=
∏

q, σ, n

β

N

(
−iωn + Eq − µ− 1

2
µ0Bmσ

)
=
∏
q, n

β2

N2

(
−iωn + Eq − µ− 1

2
µ0B

)(
−iωn + Eq − µ+

1

2
µ0B

)
=
∏
q, n

β2

N2

(
(−iωn + Eq − µ)2 − 1

4
µ2

0B
2

)

(d) From the free energy A = − 1
β

lnZ calculate the zero-field magnetic susceptibility χ =

− ∂2A/∂B2|B=0. Show that:

χ = −1

2
µ2

0kBT
∑
q, n

1

(−iωn + Eq − µ)2

Answer:

A = − 1

β
lnZ = − 1

β

∑
q, n

ln

[
β2

N2

(
(−iωn + Eq − µ)2 − 1

4
µ2

0B
2

)]
∂A

∂B
= − 1

β

∑
q, n

−1
2
µ2

0B

(−iωn + Eq − µ)2 − 1
4
µ2

0B
2

χ = − ∂2A

∂B2

∣∣∣∣
B=0

= −1

2
µ2

0kBT
∑
q, n

1

(−iωn + Eq − µ)2
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(e) Using the complex contour trick discussed in class, evaluate the sum over Matsubara
frequencies in the expression for χ. Show that:

χ = −µ
2
0

2

∑
q

f ′F (Eq)

where fF (E) = (eβ(E−µ) + 1)−1 is the Fermi distribution and f ′F (E) ≡ dfF (E)/dE.

Answer: We want to evaluate the sum S =
∑∞

n=−∞ h(iωn), where h(z) = (−z+Eq− µ)−2.
Introducing the counting function g(z) = β/(eβz+1), we use the complex contour integration
trick from class, which states that S is given by:

S =
∑

zi∈poles of h(z)

Resz=zi
[h(z)g(z)]

This result is true if the product h(z)g(z) decays faster than R−1 on the big circle z = Reiθ

for R → ∞. Clearly this condition is satisfied, since h(z) ∼ z−2 for large |z|. h(z) has a
second-order pole at z = Eq − µ, so:

S = Resz=Eq−µ
β

(−z + Eq − µ)2(eβz + 1)
= − β2eβ(Eq−µ)

(eβ(Eq−µ) + 1)2
= βf ′F (Eq)

Thus:

χ = −1

2
µ2

0kBT
∑
q, n

1

(−iωn + Eq − µ)2
= −µ

2
0

2

∑
q

f ′f (Eq)

(f) To understand the physical significance of the result for χ, let us introduce the function

ρ(E) ≡
∑

q δ(E − Eq). This function has the property that
∫ E+∆E

E
ρ(E ′)dE ′ counts the

number of q modes that have energies Eq between E and E+∆E. (You can see this simply
because the integral over the sum of delta functions δ(E − Eq) will contribute 1 for every
Eq that falls in the range between E and E + ∆E.) Thus ρ(E) is called the single-particle
density of states, and it becomes a continuous function in the thermodynamic limit. It is
useful in converting sums over the momentum modes q to integrals over energy E. Show
that χ can be rewritten as:

χ = −µ
2
0

2

∫ ∞

−∞
dE ρ(E)f ′F (E)

Answer:

χ = −µ
2
0

2

∑
q

f ′f (Eq) = −µ
2
0

2

∑
q

∫ ∞

−∞
dE δ(E − Eq)f

′
F (E) = −µ

2
0

2

∫ ∞

−∞
dE ρ(E)f ′F (E)

(g) Note that in the limit of small T , the Fermi distribution fF (E) is essentially equal to 1
for E < µ and equal to 0 for E > µ. The derivative f ′E(E) is nearly zero everywhere except
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for a small region around E = µ, in other words for E near EF ≡ µ(T = 0). Thus at low
temperatures the main contribution to the integral for χ in part (f) will come from modes
closest to the Fermi surface. As we argued in class, these are the modes which control the
low-energy physics of the system. To see this directly, let us calculate χ at T = 0. Show
that:

χ(T = 0) =
µ2

0

2
ρ(EF )

Thus χ(T = 0) is directly proportional to the density of states at the Fermi surface. Hint:
Use the fact that dθ(x)/dx = δ(x), where θ(x) is the step function: θ(x) = 1 for x > 0, and
θ(x) = 0 for x < 0.

Answer: At T = 0 the Fermi distribution becomes a step function: fF (E) = θ(EF − E).
Thus f ′F (E) = −δ(EF − E). Plugging this into the result of part (f) we find:

χ(T = 0) =
µ2

0

2

∫ ∞

−∞
dE ρ(E)δ(EF − E) =

µ2
0

2
ρ(EF )
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