RG Methods in Statistical Field Theory: Problem Set 3 Solution

In class we discussed the spin wave fluctuations which occur when a continuous symmetry is broken. In this problem set, we will see that such fluctuations can actually destroy the ordered state completely under certain conditions. We will work in d dimensions, and concentrate on the case of an order parameter with $n=2$ components (known as the $X Y$ model).

Let us start at the same place we did in class: by taking the mean-field solution and adding small fluctuations to it. Assume the mean-field solution has the form $\mathbf{m}(\mathbf{x})=m \hat{\mathbf{e}}_{1}$, where m is independent of \mathbf{x}, and $\hat{\mathbf{e}}_{1}$ is a unit vector along the direction in which the system orders at low temperature. Instead of using the $\phi_{\|}$and ϕ_{\perp} fluctuations we introduced in class, we choose to write the fluctuations in a different form, more convenient when the $\mathbf{m}(\mathbf{x})$ vector has only $n=2$ components:

$$
\mathbf{m}(\mathbf{x})=m \cos \theta(\mathbf{x}) \hat{\mathbf{e}}_{1}+m \sin \theta(\mathbf{x}) \hat{\mathbf{e}}_{2}
$$

Here $\theta(\mathbf{x})$ is an angle that can vary with position. When there are no fluctuations, $\theta(\mathbf{x})=0$, and we get the mean-field solution with all the $\mathbf{m}(\mathbf{x})$ vectors pointing in the same direction. Let us now see what happens when we allow $\theta(\mathbf{x})$ to be nonzero.
(a) First, let us calculate the energy of the fluctuations. Plug the above form for $\mathbf{m}(\mathbf{x})$ into the Hamiltonian functional:

$$
\mathcal{H}[\mathbf{m}(\mathbf{x})]=\int d^{d} \mathbf{x}\left[\frac{r}{2} m^{2}(\mathbf{x})+u m^{4}(\mathbf{x})+\frac{c}{2}(\nabla \mathbf{m}(\mathbf{x}))^{2}\right]
$$

Show that \mathcal{H} can be written as:

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{K}{2} \int d^{d} \mathbf{x}(\nabla \theta(\mathbf{x}))^{2}
$$

where $\mathcal{H}_{0}=V\left(\frac{r}{2} m^{2}+u m^{4}\right)$ is just the mean-field energy, and $K=\mathrm{cm}^{2}$.
Answer: Let us plug $\mathbf{m}(\mathbf{x})=m \cos \theta(\mathbf{x}) \hat{\mathbf{e}}_{1}+m \sin \theta(\mathbf{x}) \hat{\mathbf{e}}_{2}$ into each term in the Hamiltonian:

$$
\begin{aligned}
m^{2}(\mathbf{x}) & =\mathbf{m}(\mathbf{x}) \cdot \mathbf{m}(\mathbf{x})=m^{2} \cos ^{2} \theta(\mathbf{x})+m^{2} \sin ^{2} \theta(\mathbf{x})=m^{2} \\
m^{4}(\mathbf{x}) & =(\mathbf{m}(\mathbf{x}) \cdot \mathbf{m}(\mathbf{x}))^{2}=m^{4} \\
(\nabla \mathbf{m}(\mathbf{x}))^{2} & =\sum_{i=1}^{2} \sum_{\alpha=1}^{d} \partial_{\alpha} m_{i}(\mathbf{x}) \partial_{\alpha} m_{i}(\mathbf{x}) \\
& =m^{2} \sin ^{2} \theta(\mathbf{x}) \sum_{\alpha}\left(\partial_{\alpha} \theta(\mathbf{x})\right)^{2}+m^{2} \cos ^{2} \theta(\mathbf{x}) \sum_{\alpha}\left(\partial_{\alpha} \theta(\mathbf{x})\right)^{2} \\
& =m^{2} \sum_{\alpha}\left(\partial_{\alpha} \theta(\mathbf{x})\right)^{2} \\
& =m^{2}(\nabla \theta(\mathbf{x}))^{2}
\end{aligned}
$$

Putting everything together, we find:

$$
\mathcal{H}=\int d^{d} \mathbf{x}\left[\frac{r}{2} m^{2}+u m^{4}+\frac{c m^{2}}{2}(\nabla \theta(\mathbf{x}))^{2}\right]
$$

$$
\begin{aligned}
& =V\left(\frac{r}{2} m^{2}+u m^{4}\right)+\int d^{d} \mathbf{x} \frac{c m^{2}}{2}(\nabla \theta(\mathbf{x}))^{2} \\
& =\mathcal{H}_{0}+\int d^{d} \mathbf{x} \frac{K}{2}(\nabla \theta(\mathbf{x}))^{2}
\end{aligned}
$$

(b) Now imagine the system is a box of volume $V=L^{d}$, and write $\theta(\mathbf{x})$ as a Fourier expansion:

$$
\theta(\mathbf{x})=\frac{1}{V} \sum_{\mathbf{q}} e^{i \mathbf{q} \cdot \mathbf{x}} \theta(\mathbf{q}), \quad \theta(\mathbf{q})=\int d^{d} \mathbf{x} e^{-i \mathbf{q} \cdot \mathbf{x}} \theta(\mathbf{x})
$$

where $\mathbf{q}=\frac{2 \pi}{L}\left(n_{1} \hat{\mathbf{e}}_{1}+n_{2} \hat{\mathbf{e}}_{2}+\ldots n_{d} \hat{\mathbf{e}}_{d}\right)$ and the n_{i} are integers. The functions $e^{i \mathbf{q} \cdot \mathbf{x}}$ satisfy the orthogonality condition:

$$
\int d^{d} \mathbf{x} e^{i\left(\mathbf{q}-\mathbf{q}^{\prime}\right) \cdot \mathbf{x}}=V \delta_{\mathbf{q}, \mathbf{q}^{\prime}}
$$

Show that the Hamiltonian can be written as:

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{K}{2 V} \sum_{\mathbf{q}} q^{2} \theta(\mathbf{q}) \theta(-\mathbf{q})
$$

Answer:

$$
\begin{aligned}
\mathcal{H} & =\mathcal{H}_{0}+\int d^{d} \mathbf{x} \frac{K}{2}(\nabla \theta(\mathbf{x}))^{2} \\
& =\mathcal{H}_{0}-\frac{K}{2 V^{2}} \int d^{d} \mathbf{x} \sum_{\mathbf{q}, \mathbf{q}^{\prime}} \mathbf{q} \cdot \mathbf{q}^{\prime} e^{i\left(\mathbf{q}+\mathbf{q}^{\prime}\right) \cdot \mathbf{x}} \theta(\mathbf{q}) \theta\left(\mathbf{q}^{\prime}\right) \\
& =\mathcal{H}_{0}-\frac{K}{2 V^{2}} \sum_{\mathbf{q}, \mathbf{q}^{\prime}} V \delta_{\mathbf{q},-\mathbf{q}^{\prime}} \mathbf{q} \cdot \mathbf{q}^{\prime} \theta(\mathbf{q}) \theta\left(\mathbf{q}^{\prime}\right) \\
& =\mathcal{H}_{0}+\frac{K}{2 V} \sum_{\mathbf{q}} q^{2} \theta(\mathbf{q}) \theta(-\mathbf{q})
\end{aligned}
$$

(c) Use the fact that $\theta(\mathbf{x})$ is real to show that $\theta(-\mathbf{q})=\theta^{*}(\mathbf{q})$. This means that $\theta(\mathbf{q}) \theta(-\mathbf{q})=$ $\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})$, where $\theta_{R}(\mathbf{q})$ and $\theta_{I}(\mathbf{q})$ are the real and imaginary parts of $\theta(\mathbf{q})$. Show that the Hamiltonian can be written as:

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{K}{V} \sum_{\mathbf{q}>0} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]
$$

Here the sum over $\mathbf{q}>0$ is shorthand notation that means we are summing over only half of the possible values of \mathbf{q}. (For example, we restrict one of the integers n_{i} to be positive.)

Answer:

$$
\theta^{*}(\mathbf{q})=\int d^{d} \mathbf{x} e^{i \mathbf{q} \cdot \mathbf{x}} \theta(\mathbf{x})=\theta(-\mathbf{q})
$$

Using $\theta(\mathbf{q}) \theta(-\mathbf{q})=\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})$ we can write the Hamiltonian as:

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{K}{2 V} \sum_{\mathbf{q}} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]
$$

Note that $\theta_{R}(-\mathbf{q})=\theta_{R}(\mathbf{q})$ and $\theta_{I}(-\mathbf{q})=-\theta_{I}(\mathbf{q})$, so in the sum both \mathbf{q} and $-\mathbf{q}$ contribute the same value $q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]$. Thus we can restrict the sum to half of \mathbf{q} space, and multiply it by a factor of 2 :

$$
\mathcal{H}=\mathcal{H}_{0}+\frac{K}{V} \sum_{\mathbf{q}>0} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]
$$

(d) The partition function involves integrating over all possible functions $\mathbf{m}(\mathbf{x})$. In terms of the Fourier-transformed Hamiltonian, this means integrating over all possible values of the Fourier components $\theta_{R}(\mathbf{q})$ and $\theta_{I}(\mathbf{q})$:

$$
Z=\int_{-\infty}^{\infty} \prod_{\mathbf{q}>0} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{-\beta \mathcal{H}}
$$

We are interested in calculating the average of $\mathbf{m}(\mathbf{x})$ along the $\hat{\mathbf{e}}_{1}$ direction, which we can write as follows:

$$
\left\langle m_{1}(\mathbf{x})\right\rangle=m\langle\cos \theta(\mathbf{x})\rangle=m \Re\left\langle e^{i \theta(\mathbf{x})}\right\rangle
$$

where $\Re z$ denotes the real part of a complex number z. Thus to find $\left\langle m_{1}(\mathbf{x})\right\rangle$ we have to find the average:

$$
\left\langle e^{i \theta(\mathbf{x})}\right\rangle=\frac{1}{Z} \int_{-\infty}^{\infty} \prod_{\mathbf{q}>0} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{i \theta(\mathbf{x})} e^{-\beta \mathcal{H}}
$$

Replace $\theta(\mathbf{x})$ by its Fourier expansion: it turns out that the integral above can be rewritten as a product over ordinary Gaussian integrals, which can be solved using the basic rule we showed in class:

$$
\int_{-\infty}^{\infty} d \phi e^{-\frac{K}{2} \phi^{2}+h \phi}=\sqrt{\frac{2 \pi}{K}} e^{h^{2} / 2 K}
$$

where K and h can be complex, with $\Re K>0$. Show that:

$$
\left\langle m_{1}(\mathbf{x})\right\rangle=m e^{-W} \quad \text { where } \quad W=\frac{1}{\beta K V} \sum_{\mathbf{q}>0} \frac{1}{q^{2}}
$$

Answer:

$$
\begin{aligned}
\left\langle e^{i \theta(\mathbf{x})}\right\rangle & =\frac{1}{Z} \int_{-\infty}^{\infty} \prod_{\mathbf{q}>0} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{i \theta(\mathbf{x})} e^{-\beta \mathcal{H}} \\
& =\frac{1}{Z} \int_{-\infty}^{\infty} \prod_{\mathbf{q}>0} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{\frac{i}{V} \sum_{\mathbf{q}} e^{i \mathbf{q} \cdot x} \theta(\mathbf{q})} e^{-\beta \mathcal{H}_{0}-\frac{\beta K}{V} \sum_{\mathbf{q}>0} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]} \\
& =\frac{1}{Z} \int_{-\infty}^{\infty} \prod_{\mathbf{q}>0} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{\frac{i}{V} \sum_{\mathbf{q}>0}\left(e^{i \mathbf{q} \cdot \mathbf{x}} \theta(\mathbf{q})+e^{-i \mathbf{q} \cdot \mathbf{x}} \theta(-\mathbf{q})\right)} e^{-\beta \mathcal{H}_{0}-\frac{\beta K}{V} \sum_{\mathbf{q}>0} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]} \\
& =\frac{e^{-\beta \mathcal{H}_{0}}}{Z} \prod_{\mathbf{q}>0} \int_{-\infty}^{\infty} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{-\frac{\beta K}{V} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]+\frac{i}{V}\left(e^{i \mathbf{q} \cdot \mathbf{x}} \theta(\mathbf{q})+e^{-i \mathbf{q} \cdot \mathbf{x}} \theta(-\mathbf{q})\right)} \\
& =\frac{e^{-\beta \mathcal{H}_{0}}}{Z} \prod_{\mathbf{q}>0} \int_{-\infty}^{\infty} d \theta_{R}(\mathbf{q}) d \theta_{I}(\mathbf{q}) e^{-\frac{\beta K}{V} q^{2}\left[\theta_{R}^{2}(\mathbf{q})+\theta_{I}^{2}(\mathbf{q})\right]+\frac{2 i}{V}\left(\cos (\mathbf{q} \cdot \mathbf{x}) \theta_{R}(\mathbf{q})-\sin (\mathbf{q} \cdot \mathbf{x}) \theta_{I}(\mathbf{q})\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{-\beta \mathcal{H}_{0}}}{Z} \prod_{\mathbf{q}>0} \sqrt{\frac{\pi V}{\beta K q^{2}}} e^{-\frac{\cos ^{2}(\mathbf{q} \cdot \mathbf{x})}{V \beta K q^{2}}} \sqrt{\frac{\pi V}{\beta K q^{2}}} e^{-\frac{\sin ^{2}(\mathbf{q} \cdot \mathbf{x})}{V \beta K q^{2}}} \\
& =\prod_{\mathbf{q}>0} e^{-1 /\left(V \beta K q^{2}\right)} \\
& =e^{-\frac{1}{\beta K V} \sum_{\mathbf{q}>0} \frac{1}{q^{2}}} \equiv e^{-W}
\end{aligned}
$$

Clearly W is real. Thus:

$$
\left\langle m_{1}(\mathbf{x})\right\rangle=m \Re\left\langle e^{i \theta(\mathbf{x})}\right\rangle=m e^{-W}
$$

(e) Mean-field theory tells us that the constant m will be nonzero below T_{c}. If $W<\infty$, then the result of part (d) shows us that we still have an ordered phase at low temperatures, though with an average magnetization $\left\langle m_{1}(\mathbf{x})\right\rangle=m e^{-W}$ that is smaller than the mean-field solution because of the effects of fluctuations. However, if $W=\infty$, we get the interesting result that $\left\langle m_{1}(\mathbf{x})\right\rangle=0$: the ordered phase has been destroyed by the fluctuations! Calculate W, and show that there is an ordered phase for dimensions $d>2$. For $d \leq 2$ show that there is no order except at $T=0$.

Hint: So how do we calculate the value of W ? In the limit of large volume we can replace the sum over \mathbf{q} by an integral:

$$
W=\frac{1}{\beta K V} \sum_{\mathbf{q}>0} \frac{1}{q^{2}} \rightarrow \frac{1}{2 \beta K} \int \frac{d^{d} \mathbf{q}}{(2 \pi)^{d}} \frac{1}{q^{2}}
$$

where we add the factor of $1 / 2$ because we make the integral go over all of \mathbf{q}-space, not just one-half. We have to be careful here: when we expanded $\theta(\mathbf{x})$ in terms of Fourier components, we did not specify any restrictions on \mathbf{q}. However it is unphysical to include fluctuations with such large $|\mathbf{q}|$ that the wavelengths $\lambda=2 \pi /|\mathbf{q}|$ are smaller than the microscopic lattice spacing of our system ℓ. Thus our integral should not really be over all \mathbf{q}-space, but rather within some cutoff $|\mathbf{q}|<\Lambda$, where $\Lambda \propto 1 / \ell$. We are integrating inside a d-dimensional sphere of radius Λ, where Λ is large but not infinite. With this restriction in place, we can now calculate the integral. For $d>1$ the infinitesimal d-dimensional volume $d^{d} \mathbf{q}$ can be written in radial coordinates as $d^{d} \mathbf{q}=q^{d-1} d q d \Omega_{d}$, where $d \Omega_{d}$ is a d-dimensional solid angle. The angular integration can be done using the fact that:

$$
\int d \Omega_{d}=S_{d} \quad \text { where } \quad S_{d}=\frac{2 \pi^{d / 2}}{(d / 2-1)!}
$$

Here S_{d} is the area of a d-dimensional unit sphere.
Answer: Writing W as an integral:

$$
\begin{aligned}
W & =\frac{1}{2 \beta K} \int \frac{d^{d} \mathbf{q}}{(2 \pi)^{d}} \frac{1}{q^{2}} \\
& =\frac{k_{B} T S_{d}}{2 K(2 \pi)^{d}} \int_{0}^{\Lambda} d q \frac{q^{d-1}}{q^{2}} \\
& =\frac{k_{B} T S_{d}}{2 K(2 \pi)^{d}} \int_{0}^{\Lambda} d q q^{d-3}
\end{aligned}
$$

For $d \leq 2$ this integral blows up, so $W=\infty$ and there is no ordered phase for $T \neq 0$. When $d>2$ the integral is convergent, and the expression for W becomes:

$$
W=\frac{k_{B} T S_{d} \Lambda^{d-2}}{2 K(2 \pi)^{d}(d-2)}
$$

Thus there is an ordered phase at low temperatures, with the magnetization suppressed by a factor of e^{-W} due to fluctuations.

