
RG Methods in Statistical Field Theory:
Problem Set 4 Solution

In class we discussed the phase transition in superconductors, described by a complex or-
der parameter ψ(x) where |ψ(x)|2 = ns, the density of superconducting electrons. In this
problem set we will look at this transition in more detail, deriving one of the most dramatic
consequences of superconductivity: the photons inside a superconductor actually gain an
effective mass. This is known as the Anderson-Higgs mechanism, and occurs when a local
gauge symmetry is spontaneously broken. This idea occupies a central place in particle
physics, as the mechanism by which all elementary particles acquire mass. We will see that
a direct consequence of massive photons is the Meissner effect: the expulsion of magnetic
fields from the interior of a superconductor.

Our starting point is the Landau-Ginzburg Hamiltonian for a three-dimensional supercon-
ductor in the presence an electromagnetic vector potential A(x) associated with the magnetic
field B(x) = ∇×A(x):

H =

∫
d3x

[
r

2
|ψ(x)|2 + u|ψ(x)|4 +

K

2
Dαψ(x)D∗

αψ
∗(x) +

1

8π
(∇×A(x))2

]

Here r = a(T − Tc), u > 0, and the operator Dα is defined as:

Dα ≡ ∂α − ieAα

where ∂α ≡ ∂/∂xα is the spatial derivative along the αth direction, and Aα is the αth
component of A. The Einstein summation convention is used in the Dαψ(x)D∗

αψ
∗(x) term,

and will be assumed throughout the rest of the problem set. The constants K and e are
related to the microscopic parameters describing the Cooper pairs: K = ~2/mc, e = ec/~c,
where mc and ec are the mass and charge of a Cooper pair. The last term in the Hamiltonian
is just the magnetic field energy density 1

8π
|B(x)|2.

(a) The K
2
DαψD

∗
αψ

∗ term in the Hamiltonian above has the same role as the c
2
(∇m)2 =

c
2
∂αm∂αm term in the normal Landau-Ginzburg Hamiltonian we are familiar with from class.

But why do we use the operator Dα instead of just ∂α? This has to do with the fact that
our Hamiltonian must be invariant under gauge transformations. We know that in ordinary
electromagnetism the physics of our system is unchanged if we replace the vector potential
A(x) with A(x) +∇Λ(x), where Λ(x) is an arbitrary function. For example the magnetic
field B = ∇ × A remains unchanged, because ∇ × ∇Λ(x) = 0. In quantum mechanics a
gauge transformation involves changing both the vector potential and the wavefunction:

Aα(x) 7→ Aα(x) +
1

e
∂αθ(x) , ψ(x) 7→ ψ(x)eiθ(x)

where we have written Λ(x) as 1
e
θ(x). Show that the Landau-Ginzburg Hamiltonian for a

superconductor is invariant under this gauge transformation. We call the operator Dα the
gauge-invariant derivative.

Answer: Under the gauge transformation the first two terms in the Hamiltonian become:

r

2
|ψ(x)eiθ(x)|2 + u|ψ(x)eiθ(x)|4 =

r

2
|ψ(x)|2 + u|ψ(x)|4

1



so these terms are unchanged. The third term becomes:

K

2

[
(∂α − ieAα(x)− i∂αθ(x))(ψ(x)eiθ(x))

] [
(∂α + ieAα(x) + i∂αθ(x))(ψ∗(x)e−iθ(x))

]

=
K

2

[
eiθ(x)(∂α + i∂αθ(x)− ieAα(x)− i∂αθ(x))ψ(x)

]

· [e−iθ(x)(∂α − i∂αθ(x) + ieAα(x) + i∂αθ(x))ψ∗(x)
]

=
K

2
[(∂α − ieAα(x))ψ(x)] [(∂α + ieAα(x))ψ∗(x)]

=
K

2
Dαψ(x)D∗

αψ
∗(x)

thus this term is also unchanged. Finally the last term in the Hamiltonian becomes:

1

8π

(
∇×

[
A(x) +

1

e
∇θ(x)

])2

=
1

8π

(
∇×A(x) +

1

e
∇×∇θ(x)

)2

=
1

8π
(∇×A(x))2

and is also unchanged. We conclude that the Hamiltonian is invariant under the gauge
transformation.

(b) Let us solve the problem using a mean-field approximation, where we write the parti-
tion function as Z ≈ exp(−βH[ψsad(x),Asad(x)]), where ψsad(x) and Asad(x) minimize the
Hamiltonian H, satisfying the saddle-point equations:

δH
δψ∗(x)

= 0 ,
δH

δAα(x)
= 0

In calculating these functional derivatives, treat ψ(x) and ψ∗(x) as independent functions.
(There is a third saddle-point equation, the derivative of H with respect to ψ(x), but it gives
no new information.) Show that the saddle point equations can be written as:

r

2
ψ(x) + 2uψ(x)|ψ(x)|2 − K

2
DαDαψ(x) = 0,

K

2
(−ieψ(x)D∗

αψ
∗(x) + ieψ∗(x)Dαψ(x))− 1

4π
εγσαεγµν∂σ∂µAν(x) = 0

Hint: Write the γth component of the curl ∇×A in the following form:

(∇×A)γ = εγµν∂µAν

where all repeated indices are summed over, and εγµν is the totally antisymmetric tensor,
whose components are equal to zero except for ε123 = ε231 = ε312 = 1 and ε132 = ε321 = ε213 =
−1.

Answer: We can write the Hamiltonian as:

H =

∫
d3x′

[
r

2
ψ(x′)ψ∗(x′) + uψ(x′)2ψ∗(x′)2

+
K

2
[(∂γ − ieAγ(x

′))ψ(x′)] [(∂γ + ieAγ(x
′))ψ∗(x′)] +

1

8π
εγστ∂σAτ (x

′)εγµν∂µAν(x
′)
]
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To find the first saddle point equation, let us apply the functional derivative with respect to
ψ∗(x) to each part of the Hamiltonian:

δ

δψ∗(x)

∫
d3x′

[r
2
ψ(x′)ψ∗(x′) + uψ(x′)2ψ∗(x′)2

]

=

∫
d3x′

[
r

2
ψ(x′)

δψ∗(x′)
δψ∗(x)

+ 2uψ(x′)2ψ∗(x′)
δψ∗(x′)
δψ∗(x)

]

=

∫
d3x′

[r
2
ψ(x′)δ(3)(x′ − x) + 2uψ(x′)2ψ∗(x′)δ(3)(x′ − x)

]

=
r

2
ψ(x) + 2uψ(x)2ψ∗(x)

δ

δψ∗(x)

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)] [(∂γ + ieAγ(x
′))ψ∗(x′)]

=

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)]
[
(∂γ + ieAγ(x

′))
δψ∗(x′)
δψ∗(x)

]

=

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)]
[
(∂γ + ieAγ(x

′))δ(3)(x′ − x)
]

=

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)] ∂γδ
(3)(x′ − x)

+

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)] ieAγ(x
′)δ(3)(x′ − x)

= −
∫
d3x′

K

2
∂γ [(∂γ − ieAγ(x

′))ψ(x′)] δ(3)(x′ − x)

+
K

2
[(∂γ − ieAγ(x))ψ(x)] ieAγ(x)

= −K
2
∂γ [(∂γ − ieAγ(x))ψ(x)] +

K

2
[(∂γ − ieAγ(x))ψ(x)] ieAγ(x)

= −K
2

[∂γ − ieAγ(x)] [(∂γ − ieAγ(x))ψ(x)]

= −K
2
DγDγψ(x)

δ

δψ∗(x)

∫
d3x′

1

8π
εγστ∂σAτ (x

′)εγµν∂µAν(x
′) = 0

Putting everything together we find:

r

2
ψ(x) + 2uψ(x)|ψ(x)|2 − K

2
DγDγψ(x) = 0

To find the second saddle point equation, let us apply the functional derivative with respect
to Aα(x) to each part of the Hamiltonian:

δ

δAα(x)

∫
d3x′

[r
2
ψ(x′)ψ∗(x′) + uψ(x′)2ψ∗(x′)2

]
= 0

δ

δAα(x)

∫
d3x′

K

2
[(∂γ − ieAγ(x

′))ψ(x′)] [(∂γ + ieAγ(x
′))ψ∗(x′)]

= −ieK
2

∫
d3x′

δAγ(x
′)

δAα(x)
ψ(x′) [(∂γ + ieAγ(x

′))ψ∗(x′)]
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+
ieK

2

∫
d3x′ [(∂γ − ieAγ(x

′))ψ(x′)]
δAγ(x

′)
δAα(x)

ψ∗(x′)

= −ieK
2

∫
d3x′δαγδ

(3)(x′ − x)ψ(x′) [(∂γ + ieAγ(x
′))ψ∗(x′)]

+
ieK

2

∫
d3x′ [(∂γ − ieAγ(x

′))ψ(x′)] δαγδ
(3)(x′ − x)ψ∗(x′)

= −ieK
2
ψ(x) [(∂α + ieAα(x))ψ∗(x)] +

ieK

2
[(∂α − ieAα(x))ψ(x)]ψ∗(x)

=
K

2
(−ieψ(x)D∗

αψ
∗(x) + ieψ∗(x)Dαψ(x))

δ

δAα(x)

∫
d3x′

1

8π
εγστ∂σAτ (x

′)εγµν∂µAν(x
′)

=
1

8π

∫
d3x′εγστ∂σ

δAτ (x
′)

δAα(x)
εγµν∂µAν(x

′) +
1

8π

∫
d3x′εγστ∂σAτ (x

′)εγµν∂µ
δAν(x

′)
δAα(x)

=
1

8π

∫
d3x′εγστδτα∂σδ

(3)(x′ − x)εγµν∂µAν(x
′)

+
1

8π

∫
d3x′εγστ∂σAτ (x

′)εγµνδνα∂µδ
(3)(x′ − x)

= − 1

8π

∫
d3x′εγσαδ

(3)(x′ − x)εγµν∂σ∂µAν(x
′)

− 1

8π

∫
d3x′εγστ∂µ∂σAτ (x

′)εγµαδ
(3)(x′ − x)

= − 1

8π
εγσαεγµν∂σ∂µAν(x)− 1

8π
εγµαεγστ∂µ∂σAτ (x)

= − 1

4π
εγσαεγµν∂σ∂µAν(x)

Putting everything together we find:

K

2
(−ieψ(x)D∗

αψ
∗(x) + ieψ∗(x)Dαψ(x))− 1

4π
εγσαεγµν∂σ∂µAν(x) = 0

(c) Show that there is a saddle point solution of the form ψ(x) = ψ0 and A(x) = 0, where
ψ0 is a complex number independent of x. Find ψ0 for T > Tc and T < Tc. This tells
you the behavior of ns = |ψ(x)|2 = |ψ0|2. Note that ψ0 = |ψ0|eiθ0 has a fixed phase factor
θ0 for all x (this is like the spins in a magnetic model choosing a definite direction in the
ordered state). Thus the superconducting phase below Tc, where |ψ0| > 0, breaks the gauge
symmetry of the Hamiltonian in the same way that the ordered phase in a magnet breaks
rotational symmetry. For simplicity, we will assume θ0 = 0 from now on, so that ψ0 is real.

Answer: Plugging in the solution ψsad(x) = ψ0, Asad(x) = 0, we find that the second saddle
point equation is satisfied trivially, and the first saddle point equation becomes:

r

2
ψ0 + 2uψ0|ψ0|2 = 0

The mean-field free energy A = − 1
β

lnZ = H[ψsad(x),Asad(x)] is given by:

A = V (
r

2
|ψ0|2 + u|ψ0|4)
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For T > Tc (r > 0), the only solution to the first saddle point equation is ψ = 0. For T < Tc

(r < 0), there are additional solutions for |ψ0|2 = −r/4u, and these give a lower A than
the ψ0 = 0 solution. Hence for T > Tc, ns = |ψ0|2 = 0, and for T < Tc, ns = −r/4u =
a(Tc − T )/4u.

(d) Let us find the energy of fluctuations around the mean-field solution:

ψ(x) = ψ0e
iθ(x) , Aα(x) = aα(x)

where θ(x) is a small phase and a(x) a small vector potential that varies with position. Plug
these into the Landau-Ginzburg Hamiltonian and keep terms only up to second-order in the
θ(x) and a(x). Show that the Hamiltonian becomes:

H = H0 +

∫
d3x

[
K

2
ψ2

0(∇θ(x))2 −Keψ2
0a(x) · ∇θ(x) +

K

2
e2ψ2

0(a(x))2 +
1

8π
(∇× a)2

]

where H0 is the mean-field Hamiltonian.

Answer: Plugging the expressions for ψ(x) and Aα(x) into the Hamiltonian:

H =

∫
d3x

[
r

2
ψ2

0 + uψ4
0 +

K

2

[
(∂α − ieaα(x))ψ0e

iθ(x)
] [

(∂α + ieaα(x))ψ∗0e
−iθ(x)

]

+
1

8π
εαστ∂σaτ (x)εαµν∂µaν(x)

]

= V
(r

2
ψ2

0 + uψ4
0

)

+

∫
d3x

[
K

2
ψ2

0

[
(i∂αθ(x)− ieaα(x))eiθ(x)

] [
(−i∂αθ(x) + ieaα(x))e−iθ(x)

]

+
1

8π
(∇× a)2

]

= H0 +

∫
d3x

[
K

2
ψ2

0∂αθ(x)∂αθ(x)−Keψ2
0aα(x)∂αθ(x) +

K

2
e2ψ2

0aα(x)aα(x)

+
1

8π
(∇× a)2

]

= H0 +

∫
d3x

[
K

2
ψ2

0(∇θ(x))2 −Keψ2
0a(x) · ∇θ(x) +

K

2
e2ψ2

0(a(x))2 +
1

8π
(∇× a)2

]

(e) Plug in the Fourier expansions:

θ(x) =

∫
d3q

(2π)3
eiq·xθ(q) , aα(x) =

∫
d3q

(2π)3
eiq·xaα(q)

Show that the Hamiltonian becomes:

H = H0 +

∫
d3q

(2π)3

[
Kψ2

0

2
q2θ(q)θ(−q)− iKψ2

0eq · a(−q)θ(q)

+
K

2
e2ψ2

0a(q) · a(−q) +
1

8π
(q× a(q)) · (q× a(−q))

]
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Answer: Plugging in the Fourier expansions term by term:
∫
d3x

K

2
ψ2

0(∇θ(x))2

=
K

2
ψ2

0

∫
d3q

(2π)3

∫
d3q′

(2π)3

∫
d3xq · q′ei(q+q′)·xθ(q)θ(q′)

=
K

2
ψ2

0

∫
d3q

(2π)3

∫
d3q′

(2π)3
(2π)3δ(3)(q− q′)q · q′θ(q)θ(q′)

=
K

2
ψ2

0

∫
d3q

(2π)3
q2θ(q)θ(−q)

−
∫
d3xKeψ2

0a(x) · ∇θ(x)

= −Keψ2
0

∫
d3q

(2π)3

∫
d3q′

(2π)3

∫
d3x ia(q′) · q θ(q)ei(q+q′)·x

= −iKeψ2
0

∫
d3q

(2π)3
a(−q) · q θ(q)

∫
d3x

K

2
e2ψ2

0(a(x))2

=
K

2
e2ψ2

0

∫
d3q

(2π)3

∫
d3q′

(2π)3

∫
d3xa(q) · a(q′)ei(q+q′)·x

=
K

2
e2ψ2

0

∫
d3q

(2π)3
a(q) · a(−q)

∫
d3x

1

8π
(∇× a(x))2

=
1

8π

∫
d3q

(2π)3

∫
d3q′

(2π)3

∫
d3x (iq× a(q)) · (iq′ × a(q′))ei(q+q′)·x

=
1

8π

∫
d3q

(2π)3
(q× a(q)) · (q× a(−q))

Putting these all together gives us the desired form for the Hamiltonian.

(f) The partition function can be written as a functional integral over all possible fluctuations
θ(q) and a(q):

Z =

∫
Dθ(q)Da(q) e−βH

Let us do the integration over the phase fluctuations θ(q) only, which can be carried out
using the Gaussian functional integral formulas derived in class. Show that we can write the
partition function as:

Z ∝
∫
Da(q)e−βH̃

where we have ignored a constant factor in front (since it does not affect the physics we are
interested in), and the effective Hamiltonian H̃ involves only the a(q) fluctuations:

H̃ =

∫
ddq

(2π)3

[
Kψ2

0e
2

2

(
a(q) · a(−q)− (q · a(q))(q · a(−q))

q2

)

+
1

8π
(q× a(q)) · (q× a(−q))

]
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Hint: In class we showed that following formula for a Fourier-transformed Gaussian func-
tional integral:

∫
Dφ(q) exp

[
−1

2

∫
ddq

(2π)3
K(q)φ(q)φ(−q) +

∫
ddq

(2π)3
h(−q)φ(q)

]

=

√
(2π)∞

detK
exp

[
1

2

∫
ddq

(2π)3

h(q)h(−q)

K(q)

]

where h(−q) = h∗(q), φ(−q) = φ∗(q). You do not need to evaluate the square root constant
in front, since it just gives a constant factor multiplying Z.

Answer: The part of the Hamiltonian −βH which depends on θ(q) is:

−β
∫

d3q

(2π)3

[
Kψ2

0

2
q2θ(q)θ(−q)− iKψ2

0eq · a(−q)θ(q)

]

This has a Gaussian form with K(q) = βKψ2
0q

2 and h(−q) = iβKψ2
0eq · a(−q). Thus

integrating over the θ(q) fluctuations will contribute a factor to the partition function:

exp

[
1

2

∫
ddq

(2π)3

h(q)h(−q)

K(q)

]
= exp

[
βKψ2

0e
2

2

∫
ddq

(2π)3

(q · a(q))(q · a(−q))

q2

]

Combining this with the terms in −βH which do not depend on θ(q), we get the effective
Hamiltonian H̃ quoted above.

(g) To simplify the expression for H̃ let us decompose the vector a(q) into components per-
pendicular and parallel to q (these are known as the transverse and longitudinal components
respectively):

a(q) = a⊥(q) + a‖(q)

where

a⊥(q) ≡ a(q)− q(q · a(q))

q2
, a‖(q) ≡ q(q · a(q))

q2

Note that q · a⊥(q) = 0 and q× a‖(q) = 0. Show that H̃ can be written in the form:

H̃ =
1

2

∫
ddq

(2π)3

(
Kψ2

0e
2 +

1

4π
q2

)
a⊥(q) · a⊥(−q)

How can we interpret this Hamiltonian physically? It gives the energy for transverse electro-
magnetic fluctuations of wavevector q, in other words photons propagating with wavevector
q. When T > Tc, we are in the normal phase where ns = ψ2

0 = 0, and the energy for a q fluc-
tuation is proportional to q2. When we go to the long wavelength limit, q → 0, the energy
becomes arbitrarily small: this corresponds to the photon having zero mass. (Remember
the relativistic equation for the energy of a particle is E2 = c2p2 + m2c4. For a massless
photon m = 0 and p = ~q, so the energy goes to zero as q → 0). On the other hand, when
T < Tc, ns = ψ2

0 > 0, and we see something very different in the q → 0 limit: the energy
of a fluctuation does not go to zero, but is bounded from below by the Kψ2

0e
2 term. The

photon has acquired an effective mass in the superconducting phase.

Answer: Note that since a⊥(q) · a‖(−q) = a‖(q) · a⊥(−q) = 0, we can write a(q) · a(−q) =
a⊥(q) · a⊥(−q) + a‖(q) · a‖(−q). Using the definition of a‖(q) above we can also see that:

a‖(q) · a‖(−q) =
(q · a(q))(q · a(−q))

q2
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Thus the effective Hamiltonian H̃ can be rewritten as:

H̃ =

∫
ddq

(2π)3

[
Kψ2

0e
2

2

(
a(q) · a(−q)− (q · a(q))(q · a(−q))

q2

)

+
1

8π
(q× a(q)) · (q× a(−q))

]

=

∫
ddq

(2π)3

[
Kψ2

0e
2

2
a⊥(q) · a⊥(−q) +

1

8π
(q× a⊥(q)) · (q× a⊥(−q))

]

Using the identity (A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) and the fact that
q · a⊥(q) = 0, we can simplify the second term above to get:

H̃ =

∫
ddq

(2π)3

[
Kψ2

0e
2

2
a⊥(q) · a⊥(−q) +

1

8π
(q · q)(a⊥(q) · a⊥(−q))

]

=
1

2

∫
ddq

(2π)3

(
Kψ2

0e
2 +

1

4π
q2

)
a⊥(q) · a⊥(−q)

(h) Let us examine the consequences of massive photons. Look at the Hamiltonian H̃: it has
a nice Gaussian form. What is the correlation function 〈a⊥(q) · a⊥(−q)〉? (No complicated
calculations are necessary.) Rewrite the correlation function to make it look like:

〈a⊥(q) · a⊥(−q)〉 =
C0

1 + q2λ2

Find C0 and λ. Note that λ has units of length. The Fourier transform of this correlation
function is 〈a⊥(x) ·a⊥(x′)〉, and we know from similar examples in earlier lectures that when
λ 6= ∞, the correlation function decays at large distances as:

〈a⊥(x) · a⊥(x′)〉 ∼ exp(−|x− x′|/λ)

What this tells us is that correlations between transverse vector potential fluctuations are
suppressed exponentially with distance inside a superconductor. For example a magnetic
field outside a superconductor will only penetrate significantly into a layer of thickness λ
near the surface of the superconductor, and be exponentially small deep in the interior. This
is the Meissner effect mentioned earlier. The length λ is known as the penetration depth.
Plot the behavior of λ as a function of T for T < Tc.

Answer: The effective Hamiltonian βH̃ has a Gaussian form withK(q) = β(Kψ2
0e

2+q2/4π).
Thus:

〈a⊥(q) · a⊥(−q)〉 =
1

K(q)
=

1

β(Kψ2
0e

2 + q2/4π)

=
(βKψ2

0e
2)−1

1 + q2(4πKψ2
0e

2)−1

Thus:

C0 =
1

βKψ2
0e

2
λ =

1√
4πKψ2

0e
2
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Using the fact that ψ2
0 = 0 for T > Tc and ψ2

0 = a(Tc − T )/4u for T < Tc, we can write:

λ =

{∞ T > Tc√
u

πKe2a(Tc−T )
T < Tc

We plot λ(T ) below:

Tc

Temperature

P
en

et
ra

ti
o
n

d
ep

th
λ
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