
RG Methods in Statistical Field Theory:
Problem Set 6 Solution

Problem 1

In this problem we investigate the nature of the singularities in the Gaussian model as
T → T+

c (r → 0+). Even though at r = 0 the system exhibits fluctuations at all length
scales, we will show that the singularities are caused entirely by long-wavelength fluctuations
(small q modes).

(a) Consider the d-dimensional Gaussian model, written in terms of Fourier-transformed
variables m(q), where m is the n-component order parameter:

H =

∫ Λ

0

ddq

(2π)d

1

2

(
r + cq2 + Lq4 + · · ·

)
|m(q)|2 −H ·m(q = 0)

Here H = H ê1 is a uniform magnetic field pointing along the ê1 axis. Using the facts about
Gaussian functional integrals discussed earlier in class, find the exact expression for the
partition function Z of this system. Show that the free energy per volume f can be written
as:

f = − 1

βV
ln Z =

n

2β

∫ Λ

0

ddq

(2π)d
ln

[
v−1

0 β(r + cq2 + Lq4 + · · · )
]
− H2

2r

Hint: Depending on how you calculate Z, you might end up with a factor of δ(d)(q = 0) in
one of the terms. You can find the value of this factor using the definition: (2π)dδ(d)(q) =∫

dx exp(iq · x). Thus δ(d)(0) = V/(2π)d, where V is the volume of the system.

Answer: The partition function Z =
∫
Dm exp(−βH) has the form of a Gaussian functional

integral with kernel K(q) = β(r+cq2 +Lq4 + · · · ) and external field hi(q) = βHi(2π)dδ(d)(q)
for each component i = 1, . . . , n of the order parameter mi(q). Thus the solution is:

Z =

(
(2π)∞

det K

)n/2

exp

(
1

2

∫ Λ

0

ddq

(2π)d

hi(−q)hi(q)

K(q)

)
=

(
(2π)∞

det K

)n/2

exp

(
1

2

∫ Λ

0

ddq

(2π)d

β2H2(2π)dδ(d)(−q)(2π)dδ(d)(q)

β(r + cq2 + Lq4 + · · · )

)
=

(
(2π)∞

det K

)n/2

exp

(
βH2(2π)dδ(d)(0)

2r

)
=

(
(2π)∞

det K

)n/2

exp

(
βH2V

2r

)
where:

ln(det K) = V

∫ Λ

0

ddq

(2π)d
ln

(
v−1

0 K(q)
)

We find that:

f = − 1

βV
ln Z =

n

2β

∫ Λ

0

ddq

(2π)d
ln

[
v−1

0 β(r + cq2 + Lq4 + · · · )
]
− H2

2r
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(b) Let us look at the magnetic susceptibility, χ = −∂2f/∂H2 evaluated at H = 0. Show
that χ ∝ r−1, so it diverges as r → 0+. Note that this divergence is entirely due to the
H ·m(q = 0) term in the Hamiltonian H, where the magnetic field couples to the q = 0
mode (infinite wavelength fluctuation). The singularity does not depend in any way on the
cutoff Λ. If we change the cutoff, adding or subtracting high q modes in the Hamiltonian,
the singular behavior of χ is not affected.

Answer: From the expression for f from part (a):

χ = − ∂2f

∂H2
=

1

2
r−1

(c) Calculate the leading behavior of the specific heat for small r at H = 0, C ≈ −Tc∂
2f/∂r2.

Show that it can be written as:

C ≈ A

∫ Λ

0

dq
qd−1

(r + cq2 + Lq4 + · · · )2

where the constant A = nkBT 2
c Sd/2(2π)d and Sd is the area of a d-dimensional unit sphere.

Argue that for d > dc, there is no divergence in C as r → 0+. Find dc.

Answer: The leading behavior of derivatives of f with respect to r can be found by treating
β ≈ 1/kBTc as a constant. At H = 0 we have:

∂f

∂r
=

nkBTc

2

∫ Λ

0

ddq

(2π)d

1

r + cq2 + Lq4 + · · ·

=
nkBTcSd

2(2π)d

∫ Λ

0

dq
qd−1

r + cq2 + Lq4 + · · ·

C ≈ −Tc
∂2f

∂r2
=

nkBT 2
c Sd

2(2π)d

∫ Λ

0

dq
qd−1

(r + cq2 + Lq4 + · · · )2

The integral is bounded from above by q = Λ, so the divergence can only come from the lower
limit at q = 0. At r = 0, q → 0+, we can approximate the denominator (r+cq2+Lq4+· · · )2 ≈
c2q4, so the integrand ∝ qd−5. Thus if d > dc = 4 the integral is convergent.

(d) Now consider the case d < dc. Let us break up the integral into two parts, one going
from q = 0 to Λ/b, and the other from q = Λ/b to Λ:

C ≈ A

∫ Λ/b

0

dq
qd−1

(r + cq2 + Lq4 + · · · )2
+ A

∫ Λ

Λ/b

dq
qd−1

(r + cq2 + Lq4 + · · · )2
≡ C< + C>

Argue that for any b > 1, the contribution C> must be finite in the limit r → 0+.

Answer: The integral in the contribution C> is bounded from above by Λ, and from below
by Λ/b. Since at r = 0 the integrand does not blow up in the range Λ/b < q < Λ, C> must
be finite.
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(e) The result of part (d) means that the divergence in C is entirely contained in the C<

term. Show that as r → 0+, C< ≈ Br−α, where B is a constant independent of Λ and b. Find
the exponent α. Hint: Non-dimensionalize the C< integral using the variable x = (c/r)1/2q.

Answer: Making the substitution x = (c/r)1/2q, we have:

C< =
Ard/2

cd/2

∫ (c/r)1/2Λ/b

0

dx
xd−1

(r + rx2 + Lr2

c2
x4 + · · · )2

=
Ard/2−2

cd/2

∫ (c/r)1/2Λ/b

0

dx
xd−1

(1 + x2 + Lr
c2

x4 + · · · )2

In the limit r → 0+ the upper bound of the integral goes to ∞, and we find:

C ≈ Ard/2−2

cd/2

∫ ∞

0

dx
xd−1

(1 + x2)2

For d < 4 the integral here converges to a constant independent of Λ and b. Thus we have
C ∝ r−α, with α = 2− d/2.

Note that parts (d) and (e) are true for any b > 1, even in the limit b � Λ, where C<

corresponds to an integral over a tiny ball of radius Λ/b surrounding q = 0 in the Brillouin
zone. Thus the small q modes determine the divergence in the specific heat. The cutoff Λ,
or any other details of the high q behavior, have no affect on the singularity.

Problem 2

Up to now we have only considered systems with short-range interactions. In magnetic lattice
models we had a nearest-neighbor spin-spin interaction, and in the continuum limit this gave
us derivative terms like (∇m(x))2 in the Landau-Ginzburg Hamiltonian. But real physical
systems can also have long-range effects, decaying slowly with distance, like magnetic dipole-
dipole interactions. How would such interactions affect the critical behavior? In this problem
we look at this question in the context of the Gaussian model.

(a) Let us add a long-range interaction HLD to the Hamiltonian of the d-dimensional Gaus-
sian model, where:

HLD =

∫
ddx

∫
ddyJ(|x− y|)m(x) ·m(y)

and J(r) = A/rd+σ for some constants A, σ > 0. Show that in terms of Fourier modes, this
interaction can be written as:

HLD = Kσ

∫
ddq

(2π)d
qσm(q) ·m(−q)

where Kσ is a constant which depends on the value of σ. Hint: It is useful to change variables
to R = (x + y)/2 and r = (x − y)/2. There will be an integral over r from which the q
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dependence can be factored out using the substitution s = qr. The constant Kσ involves an
integral (independent of q) which you do not need to evaluate.

Answer:

HLD = A

∫
ddxddy

m(x) ·m(y)

|x− y|d+σ

=
A

2d+σ

∫
ddR ddr

m(R + r) ·m(R− r)

rd+σ

=
A

2d+σ

∫
ddR ddr

1

rd+σ

∫
ddq1

(2π)d

ddq2

(2π)d
m(q1) ·m(q2)e

iq1·(R+r)+iq2·(R−r)

=
A

2d+σ

∫
ddr

1

rd+σ

∫
ddq1

(2π)d

ddq2

(2π)d
m(q1) ·m(q2)e

ir·(q1−q2)(2π)dδ(d)(q1 + q2)

=
A

2d+σ

∫
ddr

1

rd+σ

∫
ddq1

(2π)d
m(q1) ·m(−q1)e

2ir·q1

=
A

2d+σ

∫
ddq

(2π)d
m(q) ·m(−q)

∫
ddr

e2ir·q

rd+σ

The r integral we can simplify through the substitution s = qr:

HLD =
A

2d+σ

∫
ddq

(2π)d
m(q) ·m(−q) qσ

∫
dds

e2is·q̂

sd+σ

Here q̂ is the unit vector in the direction of q, but the s integral gives the same answer for
all q (because we are integrating over the entire volume). Thus we can write:

HLD =
Kσ

2

∫
ddq

(2π)d
qσm(q) ·m(−q) where Kσ ≡

A

2d+σ−1

∫
dds

e2is·q̂

sd+σ

(b) Thus the Gaussian model with the long-range interaction has the form:

H =

∫ Λ

0

ddq

(2π)d

1

2

(
r + Kσq

σ + cq2 + Lq4 + · · ·
)
|m(q)|2 −H ·m(q = 0)

Construct a renormalization-group transformation for this system, and find equations for r′,
K ′

σ, c′, L′, . . .. Leave the equations in terms of the parameter ζ, where ζ is the constant of
proportionality in the definition m′(q′) = ζ−1m<(q). (Do not choose a particular value for
ζ just yet.)

Answer: Following the same steps as for the Gaussian model in class, we can write H as a
sum of slow mode and fast mode parts: H = H< +H>. Integrating out the fast modes just
gives an overall constant factor multiplying Z, and our effective Hamiltonian H̃ = H<:

H̃ =

∫ Λ/b

0

ddq

(2π)d

1

2

(
r + Kσq

σ + cq2 + Lq4 + · · ·
)
|m<(q)|2 −H ·m<(q = 0)
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Making the substitutions q′ = bq and m′(q′) = ζ−1m<(q) we find:

H̃′ = b−dζ2

∫ Λ

0

ddq′

(2π)d

1

2

(
r + Kσb

−σq′
σ

+ cb−2q′
2
+ Lb−4q′

4
+ · · ·

)
|m′(q)|2 − ζH ·m′(q′ = 0)

=

∫ Λ

0

ddq′

(2π)d

1

2

(
r′ + K ′

σq
′σ + c′q′

2
+ L′q′

4
+ · · ·

)
|m′(q)|2 −H′ ·m′(q′ = 0)

where:

r′ = ζ2b−dr, K ′
σ = ζ2b−d−σKσ, c′ = ζ2b−d−2c, L′ = ζ2b−d−4L, . . . H ′ = ζH

(c) Consider the case where σ > 2, c > 0, and Kσ, L, . . . have arbitrary values. Choose an
appropriate ζ, and show that the long-range interaction is irrelevant at the fixed point: it
does not affect the critical behavior of the system.

Answer: In this case we would like to fix c′ = c, so ζ = b(d+2)/2 and the fixed point is at
r∗ = K∗

σ = L∗ = · · · = H∗ = 0, c∗ 6= 0. The RG equation for Kσ becomes: K ′
σ = b2−σKσ.

Since σ > 2, the long-distance interaction is irrelevant at the fixed point.

(d) Consider the case where σ < 2, Kσ > 0, and c, L, . . . have arbitrary values. Choose an
appropriate ζ, and calculate the critical exponents γ, ν, and η. You should find that some
of the exponents in this case depend on σ. Thus if the decay of the long-range interaction is
sufficiently slow (σ < 2), it affects the critical behavior of the system.

Answer: In this case we would like to fix K ′
σ = Kσ, so ζ = b(d+σ)/2 and the fixed point is

at r∗ = c∗ = L∗ = · · · = H∗ = 0, K∗
σ 6= 0. We find the RG equations for r and H, giving the

thermal and magnetic eigenvalues yT and yH at the fixed point:

r′ = bσr ⇒ yT = σ, H ′ = b(d+σ)/2H ⇒ yH = (d + σ)/2

Using the same analysis as in class, we can express the exponents γ, ν, and η in terms of yT

and yH :

γ =
2yH − d

yT

= 1, ν =
1

yT

=
1

σ
, η = d− 2yH + 2 = 2− σ
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