
RG Methods in Statistical Field Theory:
Problem Set 7

due: Friday, November 17, 2006

In lecture we have looked at models where the order parameter m(x) is an n-component
vector of arbitrary length. What happens when we restrict the order parameter to be a
vector of fixed length? As we will see below, this leads to a field theory involving complicated
interactions between the Goldstone modes, known as the nonlinear σ-model. Expanding the
Hamiltonian through a perturbation series, we will be able to analyze this model through
renormalization group techniques.

Let us begin with a magnetic system on a d-dimensional hypercubic lattice, where at each
point xα there is an n-component spin s(xα). The lattice spacing is `, and the spins all have
unit length, so that |s(xα)| = 1. The Hamiltonian −βH is given by:

−βH = K
∑
〈αγ〉

s(xα) · s(xγ)

where K > 0 and the sum 〈αγ〉 is over nearest-neighbor sites in the lattice. Note that K is
a dimensionless parameter: K ≡ K0/kBT where the constant K0 has units of energy. If we
measure temperature T in units of K0/kB, then T = K−1. The partition function is:

Z =

∫ ∞

−∞

∏
α

[
dns(xα) δ(s2(xα)− 1)

]
e−βH

Here
∫ ∞
−∞ dns(xα) ≡

∫ ∞
−∞ ds1(xα) ds2(xα) . . . dsn(xα) integrates each component of s(xα)

from −∞ to∞. To keep the length of s(xα) fixed, we include the delta function δ(s2(xα)−1),
where s2(xα) = s(xα) · s(xα).

(a) Show that the Hamiltonian can be rewritten as:

−βH = −K

2

∑
〈αγ〉

(s(xα)− s(xγ))
2 + C

where C is a constant. (We will ignore this constant term from now on.)

(b) At T = 0 the system is in a ground state where all the spins are aligned. Let us choose
one particular ground state configuration, where all the spins point along the nth direction:
s(xα) = {0, . . . , 0, 1} for all positions α. We are interested in constructing a theory for low
temperatures, describing fluctuations around this ground state. Let us write the vector s(xα)
at low T as follows:

s(xα) = {π1(xα), π2(xα), . . . , πn−1(xα), σ(xα)}

Here πi(xα) is a small transverse fluctuation along the ith direction, i = 1, . . . , n−1. (These
are the n− 1 Goldstone modes that occur for a system with broken continuous symmetry.)

1



The variable σ(xα), describing the nth component of s(xα), is not independent: the con-
straint that s2(xα) = 1 means that σ2(xα) = 1−π2(xα), where π(xα) is the n−1 component
vector whose ith component is πi(xα). We can use this constraint (expressed through the
delta functions) to simplify the partition function. Do the integral over σ(xα) at each α, and
show that Z becomes:

Z =

∫ ∏
α

dn−1π(xα) exp

−K

2

∑
〈αγ〉

(π(xα)− π(xγ))
2

−K

2

∑
〈αγ〉

(√
1− π2(xα)−

√
1− π2(xγ)

)2

− 1

2

∑
α

ln(1− π2(xα))


where we have left out any constant terms. Hint: To deal with the delta functions δ(s2(xα)−
1) = δ(σ2(xα) + π2(xα) − 1) we use the following identity: if g(x) is a function of x with
roots xi where g(xi) = 0, then

δ(g(x)) =
∑

i

δ(x− xi)

g′(xi)

Here g′(xi) is the derivative of g(x) evaluated at xi. The function σ2(xα) + π2(xα) − 1 has
roots at σ(xα) = ±

√
1− π2(xα). Since we are assuming small transverse fluctuations π(xα),

a negative value for σ(xα) is unphysical, so we can ignore the negative root.

(c) Going to the continuum limit, we replace π(xα) by a continuous function π(x) of position
x. Show that our partition function becomes the functional integral:

Z =

∫
Dπe−βH

where

−βH = −K

2

∫
ddx

[
(∇π(x))2 + (∇

√
1− π2(x))2

]
− ρ

2

∫
ddx ln(1− π2(x))

Here (∇π(x))2 =
∑d

i=1

∑n−1
j=1 ∂iπj(x) ∂iπj(x), and the constant ρ ≡ N/V = `−d is the

number of spins per unit volume. Note that the constant K here is different than that
of parts (a) and (b): it has absorbed a factor of `2−d, so that now K has dimensions of
[length]2−d. Hint: Remember that in the continuum limit

∑
α = `−d

∑
α `d = `−d

∫
ddx.

(d) The Hamiltonian found in part (c) describes complicated interactions between the Gold-
stone modes through its nonlinear terms. Before we tackle the full Hamiltonian, let us focus
on the simple, Gaussian part:

−βH0 = −K

2

∫
ddx(∇π(x))2 = −K

2

∫ Λ

0

ddq

(2π)d
q2πi(q)πi(−q)

where we have also written it in terms of Fourier modes π(q), assuming a spherical Brillouin
zone of radius Λ. Note that from this point on we will use the Einstein summation convention.
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What is the average 〈πi(q1)πj(q2)〉0 evaluated with respect to H0? (No calculations are
necessary; don’t forget the delta function!) Now calculate the single-site correlation function
(i.e. the squared amplitude of the π fluctuations at x):

〈π2(x)〉0 = 〈πi(x)πi(x)〉0 =

∫ Λ

0

ddq1

(2π)d

∫ Λ

0

ddq2

(2π)d
〈πi(q1)πi(q2)〉0ei(q1+q2)·x

Show that the answer is:

〈π2(x)〉0 =
(n− 1)Sd

(2π)dK

∫ Λ

0

dq qd−3

Note that 〈π2(x)〉0 is proportional to K−1 = T , and that for d > 2, the integral is convergent
and equals Λd−2/(d−2). But for d ≤ 2, the integral diverges at the q = 0 limit. This is exactly
the result you found in Problem Set 3: the long-wavelength Goldstone mode fluctuations
destroy order for T 6= 0 in dimensions d ≤ 2, so that order is only possible at T = 0. On the
other hand, for d > 2, we have 〈π2(x)〉0 ∝ T . Thus for small T the fluctuations are small,
and we expect that there is a nonzero transition temperature to an ordered phase. To check
whether this expectation is true, let us now turn to the full Hamiltonian −βH and apply
RG techniques.

(e) Since we are interested in low T behavior, it makes sense to make an expansion of −βH
in terms of powers of T . How do we decide the order of T associated with a certain term?
From part (d) above, we can assume that the magnitude of the fluctuations π ∼ O(T 1/2).
The parameter K ∼ O(T−1). Thus the Gaussian part of the Hamiltonian:

−βH0 = −K

2

∫
ddx(∇π(x))2 ∼ O(T 0)

Now expand the full Hamiltonian −βH in a Taylor series with respect to π(x), and keep
terms up to O(T 1). Show that this gives:

−βH = −βH0 −
∫

ddx

[
K

2
(π(x) · ∇π(x))2 − ρ

2
π2(x)

]
+O(T 2)

≡ −βH0 − βU

Here (π · ∇π)2 = (πi∂kπi)(πj∂kπj) in the Einstein summation convention.

(f) Thus we have a perturbation βU to the Gaussian Hamiltonian βH0. This βU consists of
two terms: the (π · ∇π)2 and the π2 terms, which we will write as βU = βU1 + βU2. Show
that the Fourier transforms of βU1 and βU2 are:

βU1 =
K

2

∫
ddx (π(x) · ∇π(x))2

= −K

2

∫ Λ

0

ddq1 ddq2 ddq3

(2π)3d
(q1 · q3)πi(q1)πi(q2)πj(q3)πj(−q1 − q2 − q3)

βU2 = −ρ

2

∫
ddxπ2(x) = −ρ

2

∫ Λ

0

ddq

(2π)d
πi(q)πi(−q)
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. . .

We construct the RG transformation just like in class. Define slow and fast modes:

π(q) =

{
π<(q) 0 < q < Λ/b

π>(q) Λ/b < q < Λ

We break βH0 into slow and fast mode parts, βH0 = βH0< + βH0>, and then integrate the
full partition function Z with respect to the fast modes, giving:

Z = Z0>

∫
Dπ< exp

(
−βH0< + ln〈e−βU〉0>

)
We thus have some effective slow-mode Hamiltonian −βH̃, which we can write as:

−βH̃ = −βH0< + ln〈e−βU〉0>

= −K̃

2

∫ Λ/b

0

ddq

(2π)d
q2πi<(q)πi<(−q)

+
L̃

2

∫ Λ/b

0

ddq1 ddq2 ddq3

(2π)3d
(q1 · q3)πi<(q1)πi<(q2)πj<(q3)πj<(−q1 − q2 − q3)

+
ρ̃

2

∫ Λ/b

0

ddq

(2π)d
πi<(q)πi<(−q) + · · ·

for some new parameters K̃, L̃, ρ̃, etc. Note something interesting here: in the effective
Hamiltonian −βH we give different coefficients K̃ and L̃ to the (∇π)2 term and the (π ·∇π)2

term. But in the Taylor expansion of the full Hamiltonian in part (e), these two terms had
the same coefficient K. These terms having identical coefficients is a direct consequence of
the rotational symmetry of the Hamiltonian. Since an RG transformation always preserves
symmetries, the effective Hamiltonian should also have rotational symmetry: this means
that K ′ = L′ for an exact RG transformation (the primed variables are the coefficients after
making the rescaling q′ = bq and replacing π by π′). But we cannot apply RG exactly
on this system; we have to do it order by order in the cumulant expansion. Thus at first
order in RG, we might have K ′ 6= L′. This is an artifact of our approximation. If we carried
out the RG to all orders, we should find K ′ = L′. We can make a similar argument for the
constant ρ, which describes the density of spins in our system, ρ = N/V . Under an exact RG
transformation, ρ′ should equal ρ. We show this as follows: in the renormalized system the
number of degrees of freedom is N ′ = b−dN . But we also rescale our units so that x′ = x/b,
implying a new volume V ′ = b−dV . Thus ρ′ = ρ. Practically, this makes our life much easier:
the only variable whose flow we care about under RG is K.

(g) Let us now do RG to first order, expanding

ln〈e−βU〉0> ≈ −〈βU〉0> + · · · = −〈βU1〉0> − 〈βU2〉0> + · · ·

Start with the easy part, −〈βU2〉0>. Argue that βU2 can be broken up into a slow mode and
a fast mode piece. Thus show that:

−〈βU2〉0> =
ρ

2

∫ Λ/b

0

ddq

(2π)d
πi<(q)πi<(−q) + constant
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This means that −〈βU2〉0> contributes to the ρ̃ term in −βH̃. Now consider the harder part,

−〈βU1〉0> =
K

2

∫ Λ

0

ddq1 ddq2 ddq3

(2π)3d
(q1 · q3)〈πi(q1)πi(q2)πj(q3)πj(−q1 − q2 − q3)〉0>

Clearly this term mixes fast and slow modes, so we need to use Wick’s theorem and the
diagram techniques discussed in class. The vertex diagram corresponding to this term looks
like:

Note that the q1 and q3 legs are slashed: they are special and need to be distinguished,
since we have a factor (q1 · q3) inside the integral in −βU1. Find all the nonzero diagrams
that can be constructed from this vertex, and their multiplicities. Ignore diagrams that add
constant terms to the effective Hamiltonian. Evaluate the diagrams (the integrals are easy!).
Putting the contributions from −βH0<, −〈βU1〉0>, and −〈βU2〉0> together, show that:

K̃ = K +
SdΛ

d−2(1− b2−d)

(2π)d(d− 2)
, L̃ = K, ρ̃ = b−dρ

Hint: Remember that if we have an odd function f(q), where f(−q) = −f(q), then∫
ddq f(q) = 0. Also, note that we can write ρ = N/V in an alternative form, using

the fact that there are N modes q in the Brillouin zone:

ρ =
N

V
=

1

V

∑
q∈B.Z.

=

∫ Λ

0

ddq

(2π)d
=

SdΛ
d

d(2π)d

(h) Perform the rescaling and renormalizing steps: define new momenta q′ ≡ bq and new
Fourier modes π′(q′) ≡ ζ−1π<(q). Show that the RG equations are:

K ′ = ζ2b−d−2K̃, L′ = ζ4b−3d−2L̃, ρ′ = ζ2b−dρ̃

(i) How do we choose the parameter ζ? The renormalized Hamiltonian should satisfy the
same constraints as the original: we fix ζ so that the renormalized spin in position space,
s′(x′) = {π′

1(x
′), . . . , π′

n−1(x
′), σ′(x′)}, has unit length. But what are the transformation
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equations for π′(x′) and σ′(x′) in position space? To find these, let us start with the mo-
mentum space definition: π′

i(q
′) = ζ−1πi<(q). Plug this into the Fourier expansion for

π′
i(x

′),

π′
i(x

′) =

∫ Λ

0

ddq′

(2π)d
eiq′·x′

π′
i(q

′)

and show that we can write π′
i(x

′) = bdζ−1πi<(x), where we define:

πi<(x) ≡
∫ Λ/b

0

ddq

(2π)d
eiq·xπi<(q)

Alternatively, show that we can rewrite πi<(x) as:

πi<(x) =

〈∫ Λ

0

ddq

(2π)d
eiq·xπi(q)

〉
0>

= 〈πi(x)〉0>

To get this identity, remember that 〈πi<(q)〉0> = πi<(q) and 〈πi>(q)〉0> = 0, by the proper-
ties of averages with respect to the Gaussian H0>. Thus we have:

π′
i(x

′) = bdζ−1〈πi(x)〉0>

(j) The system has rotational symmetry, so a scaling equation obeyed along one direction
should be obeyed along all other directions. This implies an analogous scaling equation for
the nth component of s′(x′):

σ′(x′) = bdζ−1〈σ(x)〉0>

Let us calculate 〈σ(x)〉0>. First, note that σ(x) =
√

1− πi(x)πi(x), and Taylor expand
this to lowest order in πi(x)πi(x). Then Fourier transform and use the properties of 〈· · · 〉0>

averages to show that:

〈σ(x)〉0> = 1− 1

2
πi<(x)πi<(x)− (n− 1)

2K

SdΛ
d−2(1− b2−d)

(2π)d(d− 2)
+O(T 2)

(k) Finally, combine the results of parts (i) and (j) to show that the constraint

s′(x′)2 = π′
i(x

′)π′
i(x

′) + σ′(x′)2 = 1

implies that:

ζ = bd

(
1− (n− 1)

2K

SdΛ
d−2(1− b2−d)

(2π)d(d− 2)
+O(T 2)

)

(l) If you are reading this and have successfully completed parts (a)-(k), don’t despair: the
worst is over. Plug in the result for ζ from part (k) into the RG equation for K ′ from part
(h). Show that:

K ′ = bd−2

(
K − (n− 2)

SdΛ
d−2(1− b2−d)

(2π)d(d− 2)
+O(T 2)

)
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For an infinitesimal rescaling b = eδl ≈ 1 + δl, show that the RG equation becomes K ′ =
K + (dK/dl)δl + · · · , where:

dK

dl
= (d− 2)K − (n− 2)SdΛ

d−2

(2π)d

This implies an RG equation for the temperature T = K−1:

dT

dl
= − 1

K2

dK

dl
= (2− d)T +

(n− 2)SdΛ
d−2

(2π)d
T 2

(m) Consider the case d ≤ 2. Using the fixed point equation dT
dl

∣∣
T ∗ = 0, demonstrate that

the only low temperature fixed point is T ∗ = 0. For small temperatures T near T ∗ = 0, show
that T ′ ≈ byT T , where the thermal eigenvalue exponent yT = 2− d ≥ 0. Thus small T flow
to higher values, and eventually to the disordered sink at T ∗ = ∞. There is no order in the
system except at T = 0. Draw a flow diagram for the T axis, showing the fixed point and
flow behavior.

(n) Consider the case d > 2, n > 2. Show that in addition to the zero temperature fixed
point, there is now another fixed point at:

T ∗ =
(d− 2)(2π)d

(n− 2)SdΛd−2

Calculate the thermal eigenvalue yT at T ∗ and show that yT = d− 2. Draw a flow diagram
for the T axis, showing the fixed point and flow behavior. This T ∗ is the critical temperature
separating the disordered phase at T > T ∗ from the ordered phase at T < T ∗. Note that
T ∗ → 0 as d approaches 2 from above (looking at d as a continuous variable that can take
non-integer values). If we define ε ≡ d − 2, then T ∗ ∼ O(ε). Since our whole RG approach
was based on a low temperature expansion, we expect our results to be closest to reality
when ε is small.

(o) Notice that for n = 2, d = 2, the T ∗ equation from part (n) is indeterminate. This
reflects the fact that the n = 2, d = 2 system (known as the XY model) is special: it turns
out that long-range order is still destroyed at all T , but we need to include other effects
besides Goldstone modes (i.e. vortices), which are not described by the nonlinear σ-model.
What about d = 2, n > 2? According to part (m), in this case there is a fixed point at
T ∗ = 0, and yT = 0. Consider the critical exponent ν = 1/yT , describing the behavior of the
correlation length ξ ∼ T ν as T → 0. When yT = 0, we have ν = ∞. What does this mean
physically? To find out, look at the RG equation for dT/dl at d = 2, n > 2. Show that it is
possible to integrate this equation directly, obtaining T (l) as a function of l, where b = el:

1

T (l)
=

1

T (0)
− Cl

Here C is a positive constant and T (0) = T is the temperature of the original system. For
any T (0) > 0, T (l) increases with increasing l, flowing to larger temperature values. The
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correlation behaves like ξ′ = b−1ξ under the RG transformation (this is a simple consequence
of the length rescaling x′ = x/b), so we can write ξ(l) = e−lξ(0), where ξ(0) = ξ is the
correlation length in the original system. As l increases, ξ(l) decreases. The smallest that
ξ(l) can be is just the lattice spacing a (we wrote it as ` earlier, but here let us denote it by
a so as not to confuse l and `). The equality ξ(l) = a must occur at infinite temperature
T (l) = ∞ when the renormalized system is totally disordered. Using this fact, show that:

ξ = ae1/CT

Thus as T → 0, the correlation length for d = 2, n > 2 blows up like an exponential, faster
than any power law.
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