RG Methods in Statistical Field Theory: Quiz 2 Solution

Friday, October 6, 2006

Consider a *d*-dimensional system with an *n*-component local magnetization $\langle \mathbf{m}(\mathbf{x}) \rangle$. The magnetization at position \mathbf{x} in principle depends on the magnetic field applied at all positions \mathbf{x}' in the system. In other words, we can consider $\langle \mathbf{m}(\mathbf{x}) \rangle$ to be a functional of $\mathbf{h}(\mathbf{x}')$.

(a) Assume that $\langle \mathbf{m}(\mathbf{x}) \rangle$ equals some function $\mathbf{m}^0(\mathbf{x})$ when $\mathbf{h}(\mathbf{x}') = 0$ for all \mathbf{x}' . Now add a small, spatially-varying magnetic field $\delta \mathbf{h}(\mathbf{x}')$ throughout the system. Write a functional Taylor series expansion of $\langle m_i(\mathbf{x}) \rangle$ around $m_i^0(\mathbf{x})$, going up to first order in $\delta \mathbf{h}(\mathbf{x}')$. [Here $\langle m_i(\mathbf{x}) \rangle$ is the *i*th component of $\langle \mathbf{m}(\mathbf{x}) \rangle$.]

Answer:

$$\langle m_i(\mathbf{x}) \rangle = m_i^0(\mathbf{x}) + \int d^d \mathbf{x}' \, \frac{\delta \langle m_i(\mathbf{x}) \rangle}{\delta h_j(\mathbf{x}')} \delta h_j(\mathbf{x}') + \cdots$$

Here the Einstein summation convention is used, so that the repeated index j is summed over.

(b) Starting with the result from (a), plug in the definition of the nonlocal susceptibility $\chi_{ij}(\mathbf{x}, \mathbf{x}')$. For a small magnetic field along the *j*th direction of the form

$$\delta \mathbf{h}(\mathbf{x}') = H e^{-i\mathbf{q}\cdot\mathbf{x}'} \hat{\mathbf{e}}_j \,,$$

show that:

$$\langle m_i(\mathbf{x})\rangle = m_i^0(\mathbf{x}) + He^{-i\mathbf{q}\cdot\mathbf{x}}\chi_{ij}(\mathbf{q}) + \cdots$$

where $\chi_{ij}(\mathbf{q})$ is the Fourier transform of $\chi_{ij}(\mathbf{x}, \mathbf{x}')$. [By translational invariance, you can assume that $\chi_{ij}(\mathbf{x}, \mathbf{x}') = \chi_{ij}(\mathbf{x}' - \mathbf{x})$.]

This result shows that $\chi_{ij}(\mathbf{q})$ measures the change in the *i*th component of the magnetization when we apply a small periodic magnetic field of wavevector \mathbf{q} along the *j*th direction.

Answer: The definition of the nonlocal susceptibility is:

$$\chi_{ij}(\mathbf{x}, \mathbf{x}') = \frac{\delta \langle m_i(\mathbf{x}) \rangle}{\delta h_j(\mathbf{x}')}$$

Plugging this into the result from (a), together with $\delta \mathbf{h}(\mathbf{x}') = He^{-i\mathbf{q}\cdot\mathbf{x}'}\hat{\mathbf{e}}_j$, we find:

$$\langle m_i(\mathbf{x}) \rangle = m_i^0(\mathbf{x}) + H \int d^d \mathbf{x}' \, \chi_{ij}(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{q}\cdot\mathbf{x}'}$$

$$= m_i^0(\mathbf{x}) + H e^{-i\mathbf{q}\cdot\mathbf{x}} \int d^d \mathbf{x}' \, \chi_{ij}(\mathbf{x}' - \mathbf{x}) e^{-i\mathbf{q}\cdot(\mathbf{x}' - \mathbf{x})}$$

$$= m_i^0(\mathbf{x}) + H e^{-i\mathbf{q}\cdot\mathbf{x}} \chi_{ij}(\mathbf{q}) \, .$$