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Imagine a continuous curve in d-dimensional space given by the function R(n), where the
parameter n runs from 0 to N and measures the length along the curve in arbitrary units.
We can associate a “stretching energy” to this curve in the form of a Hamiltonian functional:
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where A > 0 is a constant. Thus if you stretch (or compress) a certain part of the curve,
making R change more rapidly with n, you will increase the energy. This H can be seen
as a continuum description of a very simple polymer of fixed length N , and the partition
function is given by the functional integral over all possible curves R(n):
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(a) We will “renormalize” this system by making a scale change: define a new parameter
n′ = n/b, which effectively means we are measuring lengths along the curves in larger units.
Introduce a new curve function R′(n′) ≡ zR(n), where z is some factor. Find the value of z
such that the Hamiltonian H preserves its form under the transformation, becoming:

H′[R′] = A
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where N ′ = N/b.

Answer:
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Thus we need to have z = b−1/2 for the Hamiltonian to preserve its form.

(b) The mean-squared end-to-end distance R̄2 of the curve is given by:

R̄2 = 〈(R(N)−R(0))2〉 =
1

Z
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Using the result of part (a), show that the function R̄2(N) obeys the relation: R̄2(N) =
bαR̄2(N/b). Find the exponent α. Use this relation to determine how R̄2(N) scales with N .

Answer: Since the Hamiltonian preserves its form under the transformation, we can write:

R̄2(N) = 〈(R(N)−R(0))2〉 = 〈(z−1R′(N ′)− z−1R′(0))2〉
= z−2〈(R′(N ′)−R′(0))2〉 = z−2R̄2(N ′)

Plugging in N ′ = N/b and z = b−1/2, we get: R̄2(N) = bR̄2(N/b). Thus α = 1. Letting
b = N , we find: R̄2(N) = NR̄2(1) ∝ N .


