RG Methods in Statistical Field Theory: Quiz 5 Solution

Friday, November 3, 2006
Imagine a continuous curve in d-dimensional space given by the function $\mathbf{R}(n)$, where the parameter n runs from 0 to N and measures the length along the curve in arbitrary units. We can associate a "stretching energy" to this curve in the form of a Hamiltonian functional:

$$
\mathcal{H}[\mathbf{R}]=A \int_{0}^{N} d n\left(\frac{d \mathbf{R}(n)}{d n}\right)^{2}
$$

where $A>0$ is a constant. Thus if you stretch (or compress) a certain part of the curve, making \mathbf{R} change more rapidly with n, you will increase the energy. This \mathcal{H} can be seen as a continuum description of a very simple polymer of fixed length N, and the partition function is given by the functional integral over all possible curves $\mathbf{R}(n)$:

$$
Z=\int \mathcal{D} \mathbf{R} e^{-\beta \mathcal{H}[\mathbf{R}]}
$$

(a) We will "renormalize" this system by making a scale change: define a new parameter $n^{\prime}=n / b$, which effectively means we are measuring lengths along the curves in larger units. Introduce a new curve function $\mathbf{R}^{\prime}\left(n^{\prime}\right) \equiv z \mathbf{R}(n)$, where z is some factor. Find the value of z such that the Hamiltonian \mathcal{H} preserves its form under the transformation, becoming:

$$
\mathcal{H}^{\prime}\left[\mathbf{R}^{\prime}\right]=A \int_{0}^{N^{\prime}} d n^{\prime}\left(\frac{d \mathbf{R}^{\prime}\left(n^{\prime}\right)}{d n^{\prime}}\right)^{2}
$$

where $N^{\prime}=N / b$.

Answer:

$$
\begin{aligned}
\mathcal{H}=A \int_{0}^{N} d n\left(\frac{d \mathbf{R}}{d n}\right)^{2} & =A \int_{0}^{N / b} d n^{\prime} b\left(\frac{1}{z} \frac{d \mathbf{R}^{\prime}}{d n}\right)^{2}=A \int_{0}^{N / b} d n^{\prime} b\left(\frac{1}{z} \frac{d n^{\prime}}{d n} \frac{d \mathbf{R}^{\prime}}{d n^{\prime}}\right)^{2} \\
& =A \int_{0}^{N / b} d n^{\prime} b\left(\frac{1}{z b} \frac{d \mathbf{R}^{\prime}}{d n^{\prime}}\right)^{2}=A \int_{0}^{N^{\prime}} d n^{\prime} \frac{1}{b z^{2}}\left(\frac{d \mathbf{R}^{\prime}}{d n^{\prime}}\right)^{2}
\end{aligned}
$$

Thus we need to have $z=b^{-1 / 2}$ for the Hamiltonian to preserve its form.
(b) The mean-squared end-to-end distance \bar{R}^{2} of the curve is given by:

$$
\bar{R}^{2}=\left\langle(\mathbf{R}(N)-\mathbf{R}(0))^{2}\right\rangle=\frac{1}{Z} \int \mathcal{D} \mathbf{R}(\mathbf{R}(N)-\mathbf{R}(0))^{2} e^{-\beta \mathcal{H}[\mathbf{R}]}
$$

Using the result of part (a), show that the function $\bar{R}^{2}(N)$ obeys the relation: $\bar{R}^{2}(N)=$ $b^{\alpha} \bar{R}^{2}(N / b)$. Find the exponent α. Use this relation to determine how $\bar{R}^{2}(N)$ scales with N.

Answer: Since the Hamiltonian preserves its form under the transformation, we can write:

$$
\begin{aligned}
\bar{R}^{2}(N)=\left\langle(\mathbf{R}(N)-\mathbf{R}(0))^{2}\right\rangle & =\left\langle\left(z^{-1} \mathbf{R}^{\prime}\left(N^{\prime}\right)-z^{-1} \mathbf{R}^{\prime}(0)\right)^{2}\right\rangle \\
& =z^{-2}\left\langle\left(\mathbf{R}^{\prime}\left(N^{\prime}\right)-\mathbf{R}^{\prime}(0)\right)^{2}\right\rangle=z^{-2} \bar{R}^{2}\left(N^{\prime}\right)
\end{aligned}
$$

Plugging in $N^{\prime}=N / b$ and $z=b^{-1 / 2}$, we get: $\bar{R}^{2}(N)=b \bar{R}^{2}(N / b)$. Thus $\alpha=1$. Letting $b=N$, we find: $\bar{R}^{2}(N)=N \bar{R}^{2}(1) \propto N$.

